Partial Differential Equations
Classification of positive solutions of semilinear elliptic equations
Comptes Rendus. Mathématique, Volume 338 (2004) no. 1, pp. 7-11.

We give a classification of all solutions of a general semilinear PDE in the positive quadrant of 2 .

Nous donnons une classification de toutes les solutions d'une EDP semi-linéaire générale dans le quadrant positif de 2 .

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2003.10.038
Busca, Jérôme 1; Efendiev, Messoud 2; Zelik, S. 3

1 CNRS and Ceremade, Université Paris Dauphine, place Maréchal de Lattre de Tassigny, 75775 Paris cedex 16, France
2 Lehrstuhl für Analysis und Modellierung, Universität zu Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
3 CNRS and laboratoire de mathématiques, Université de Poitiers, SP2MI, téléport 2, boulevard Marie et Pierre Curie, BP 30179, 86962 Futuroscope cedex, France
@article{CRMATH_2004__338_1_7_0,
     author = {Busca, J\'er\^ome and Efendiev, Messoud and Zelik, S.},
     title = {Classification of positive solutions of semilinear elliptic equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {7--11},
     publisher = {Elsevier},
     volume = {338},
     number = {1},
     year = {2004},
     doi = {10.1016/j.crma.2003.10.038},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2003.10.038/}
}
TY  - JOUR
AU  - Busca, Jérôme
AU  - Efendiev, Messoud
AU  - Zelik, S.
TI  - Classification of positive solutions of semilinear elliptic equations
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 7
EP  - 11
VL  - 338
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2003.10.038/
DO  - 10.1016/j.crma.2003.10.038
LA  - en
ID  - CRMATH_2004__338_1_7_0
ER  - 
%0 Journal Article
%A Busca, Jérôme
%A Efendiev, Messoud
%A Zelik, S.
%T Classification of positive solutions of semilinear elliptic equations
%J Comptes Rendus. Mathématique
%D 2004
%P 7-11
%V 338
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2003.10.038/
%R 10.1016/j.crma.2003.10.038
%G en
%F CRMATH_2004__338_1_7_0
Busca, Jérôme; Efendiev, Messoud; Zelik, S. Classification of positive solutions of semilinear elliptic equations. Comptes Rendus. Mathématique, Volume 338 (2004) no. 1, pp. 7-11. doi : 10.1016/j.crma.2003.10.038. http://www.numdam.org/articles/10.1016/j.crma.2003.10.038/

[1] Babin, A.; Vishik, M. Attractors of Evolutionary Equations, Stud. Math. Appl., vol. 25, North-Holland, Amsterdam, 1992

[2] Berestycki, H.; Caffarelli, L.; Nirenberg, L. Monotonicity for elliptic equations in unbounded Lipschitz domains, Comm. Pure Appl. Math., Volume 50 (1997) no. 11, pp. 1089-1111

[3] Berestycki, H.; Caffarelli, L.; Nirenberg, L. Further quantitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm Sup. Pisa Cl. Sci., Volume 25 (1998) no. 1–2, pp. 69-94

[4] H. Berestycki, M. Efendiev, S. Zelik, Dynamical approach for positive solutions of semilinear elliptic problems in unbounded domains, Preprint 01-11, Universitat Stuttgart, Mathematishes Institut, 2001

[5] Berestycki, H.; Lions, P. Nonlinear scalar field equations I. Existence of a ground state, Arch. Rational Mech. Anal., Volume 82 (1983), pp. 313-345

[6] Busca, J.; Felmer, P. Qualitative properties of some bounded positive solutions to scalar field equations, Calc. Var. Partial Differential Equations, Volume 13 (2001) no. 2, pp. 191-211

[7] Busca, J.; Sirakov, B. Symmetry results for semilinear elliptic systems in the whole space, J. Differential Equations, Volume 163 (2000) no. 1, pp. 41-56

[8] Esteban, M.; Lions, P.-L. Existence and non-existence results for semilinear elliptic problems in unbounded domains, Coll. Progress in PDE, Pitman Res. Notes, vol. 249, 1991, pp. 1-14

[9] Gidas, B.; Ni, W.; Nirenberg, L. Symmetry and related properties via the maximum principle, Comm. Math. Phys., Volume 6 (1981), pp. 883-901

[10] Gidas, B.; Ni, W.; Nirenberg, L. Symmetry of positive solutions of nonlinear elliptic equations in n , Math. Anal Appl. Part A, Academic Press, New York, 1981, pp. 369-402

[11] Kwong, M. Uniqueness of positive solutions of Δuu+up=0 in n , Arch. Rational Mech. Anal., Volume 105 (1983), pp. 243-266

[12] Temam, R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New-York, 1988

[13] Volpert, A.; Khudyaev, S. Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics, Nijhoff, Dordrecht, 1985

Cited by Sources: