Combinatorics
An analytic formula for Macdonald polynomials
Comptes Rendus. Mathématique, Volume 337 (2003) no. 9, pp. 569-574.

We give the explicit analytic development of any Jack or Macdonald polynomial in terms of elementary (resp. modified complete) symmetric functions. These two developments are obtained by inverting the Pieri formula.

Nous donnons le développement analytique explicite de tout polynôme de Jack ou de Macdonald sur les fonctions symétriques élémentaires (resp. complètes modifiées). Nous obtenons ces deux développements par inversion de la formule de Pieri.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2003.09.020
Lassalle, Michel 1; Schlosser, Michael 2

1 Centre national de la recherche scientifique, Institut Gaspard Monge, 77454 Marne-la-Vallée cedex, France
2 Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria
@article{CRMATH_2003__337_9_569_0,
     author = {Lassalle, Michel and Schlosser, Michael},
     title = {An analytic formula for {Macdonald} polynomials},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {569--574},
     publisher = {Elsevier},
     volume = {337},
     number = {9},
     year = {2003},
     doi = {10.1016/j.crma.2003.09.020},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2003.09.020/}
}
TY  - JOUR
AU  - Lassalle, Michel
AU  - Schlosser, Michael
TI  - An analytic formula for Macdonald polynomials
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 569
EP  - 574
VL  - 337
IS  - 9
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2003.09.020/
DO  - 10.1016/j.crma.2003.09.020
LA  - en
ID  - CRMATH_2003__337_9_569_0
ER  - 
%0 Journal Article
%A Lassalle, Michel
%A Schlosser, Michael
%T An analytic formula for Macdonald polynomials
%J Comptes Rendus. Mathématique
%D 2003
%P 569-574
%V 337
%N 9
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2003.09.020/
%R 10.1016/j.crma.2003.09.020
%G en
%F CRMATH_2003__337_9_569_0
Lassalle, Michel; Schlosser, Michael. An analytic formula for Macdonald polynomials. Comptes Rendus. Mathématique, Volume 337 (2003) no. 9, pp. 569-574. doi : 10.1016/j.crma.2003.09.020. http://www.numdam.org/articles/10.1016/j.crma.2003.09.020/

[1] Hua, L.-K. Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, American Mathematical Society, Providence, 1963

[2] Jing, N.H.; Józefiak, T. A formula for two-row Macdonald functions, Duke Math. J., Volume 67 (1992), pp. 377-385

[3] Krattenthaler, C. Operator methods and Lagrange inversion, a unified approach to Lagrange formulas, Trans. Amer. Math. Soc., Volume 305 (1988), pp. 431-465

[4] Krattenthaler, C. A new matrix inverse, Proc. Amer. Math. Soc., Volume 124 (1996), pp. 47-59

[5] Lapointe, L.; Lascoux, A.; Morse, J. Determinantal expressions for Macdonald polynomials, Int. Math. Res. Not., Volume 18 (1998), pp. 957-978

[6] Lassalle, M. Explicitation des polynômes de Jack et de Macdonald en longueur trois, C. R. Acad. Sci. Paris, Sér. I Math., Volume 333 (2001), pp. 505-508

[7] Lassalle, M. Une q-spécialisation pour les fonctions symétriques monomiales, Adv. Math., Volume 162 (2001), pp. 217-242

[8] Macdonald, I.G. Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, 1995

[9] Schlosser, M. Multidimensional matrix inversions and Ar and Dr basic hypergeometric series, Ramanujan J., Volume 1 (1997), pp. 243-274

Cited by Sources: