Global weak solutions in a three-dimensional chemotaxis–Navier–Stokes system
Annales de l'I.H.P. Analyse non linéaire, Volume 33 (2016) no. 5, pp. 1329-1352.

The chemotaxis–Navier–Stokes system

{nt+un=Δn(nχ(c)c),ct+uc=Δcnf(c),ut+(u)u=Δu+P+nΦ,u=0,()
is considered under homogeneous boundary conditions of Neumann type for n and c, and of Dirichlet type for u, in a bounded convex domain ΩR3 with smooth boundary, where ΦW2,(Ω), and where fC1([0,)) and χC2([0,)) are nonnegative with f(0)=0. Problems of this type have been used to describe the mutual interaction of populations of swimming aerobic bacteria with the surrounding fluid. Up to now, however, global existence results seem to be available only for certain simplified variants such as e.g. the two-dimensional analogue of (⋆), or the associated chemotaxis–Stokes system obtained on neglecting the nonlinear convective term in the fluid equation.

The present work gives an affirmative answer to the question of global solvability for (⋆) in the following sense: Under mild assumptions on the initial data, and under modest structural assumptions on f and χ, inter alia allowing for the prototypical case when

f(s)=sfor all s0andχconst.,
the corresponding initial–boundary value problem is shown to possess a globally defined weak solution.

This solution is obtained as the limit of smooth solutions to suitably regularized problems, where appropriate compactness properties are derived on the basis of a priori estimates gained from an energy-type inequality for (⋆) which in an apparently novel manner combines the standard L2 dissipation property of the fluid evolution with a quasi-dissipative structure associated with the chemotaxis subsystem in (⋆).

DOI: 10.1016/j.anihpc.2015.05.002
Classification: 35Q92, 35A01, 35D30, 35Q30
Keywords: Chemotaxis, Navier–Stokes, Global existence
@article{AIHPC_2016__33_5_1329_0,
     author = {Winkler, Michael},
     title = {Global weak solutions in a three-dimensional {chemotaxis{\textendash}Navier{\textendash}Stokes} system},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1329--1352},
     publisher = {Elsevier},
     volume = {33},
     number = {5},
     year = {2016},
     doi = {10.1016/j.anihpc.2015.05.002},
     zbl = {1351.35239},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2015.05.002/}
}
TY  - JOUR
AU  - Winkler, Michael
TI  - Global weak solutions in a three-dimensional chemotaxis–Navier–Stokes system
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 1329
EP  - 1352
VL  - 33
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2015.05.002/
DO  - 10.1016/j.anihpc.2015.05.002
LA  - en
ID  - AIHPC_2016__33_5_1329_0
ER  - 
%0 Journal Article
%A Winkler, Michael
%T Global weak solutions in a three-dimensional chemotaxis–Navier–Stokes system
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 1329-1352
%V 33
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2015.05.002/
%R 10.1016/j.anihpc.2015.05.002
%G en
%F AIHPC_2016__33_5_1329_0
Winkler, Michael. Global weak solutions in a three-dimensional chemotaxis–Navier–Stokes system. Annales de l'I.H.P. Analyse non linéaire, Volume 33 (2016) no. 5, pp. 1329-1352. doi : 10.1016/j.anihpc.2015.05.002. http://www.numdam.org/articles/10.1016/j.anihpc.2015.05.002/

[1] X. Cao, S. Ishida, Global-in-time bounded weak solutions to a degenerate quasilinear Keller–Segel system with rotation, preprint. | Zbl

[2] X. Cao, Y. Wang, Global classical solutions of a 3D chemotaxis–Stokes system with rotation, preprint.

[3] Chae, M.; Kang, K.; Lee, J. Existence of smooth solutions to coupled chemotaxis–fluid equations, Discrete Contin. Dyn. Syst., Ser. A, Volume 33 (2013) no. 6, pp. 2271–2297 | DOI | Zbl

[4] Chae, M.; Kang, K.; Lee, J. Global existence and temporal decay in Keller–Segel models coupled to fluid equations, Commun. Partial Differ. Equ., Volume 39 (2014), pp. 1205–1235 | DOI | Zbl

[5] Chertock, A.; Fellner, K.; Kurganov, A.; Lorz, A.; Markowich, P.A. Sinking, merging and stationary plumes in a coupled chemotaxis–fluid model: a high-resolution numerical approach, J. Fluid Mech., Volume 694 (2012), pp. 155–190 | DOI | Zbl

[6] DiFrancesco, M.; Lorz, A.; Markowich, P.A. Chemotaxis–fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior, Discrete Contin. Dyn. Syst., Ser. A, Volume 28 (2010), pp. 1437–1453 | Zbl

[7] Espejo, E.E.; Suzuki, T. Reaction terms avoiding aggregation in slow fluids, Nonlinear Anal., Real World Appl., Volume 21 (2015), pp. 110–126 | DOI | Zbl

[8] Dombrowski C, C.; Cisneros, L.; Chatkaew, S.; Goldstein, R.E.; Kessler, J.O. Self-concentration and large-scale coherence in bacterial dynamics, Phys. Rev. Lett., Volume 93 (2004) (098103-1-4) | DOI

[9] Duan, R.J.; Lorz, A.; Markowich, P.A. Global solutions to the coupled chemotaxis–fluid equations, Commun. Partial Differ. Equ., Volume 35 (2010), pp. 1635–1673 | Zbl

[10] Duan, R.; Xiang, Z. A note on global existence for the chemotaxis–Stokes model with nonlinear diffusion, Int. Math. Res. Not., Volume 2012 (2012) (rns270, 20 pages) | DOI

[11] Giga, Y. The Stokes operator in Lr spaces, Proc. Jpn. Acad., Volume 2 (1981), pp. 85–89 | Zbl

[12] Giga, Y. Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier–Stokes system, J. Differ. Equ., Volume 61 (1986), pp. 186–212 | Zbl

[13] Henry, D. Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer, Berlin, Heidelberg, New York, 1981 | DOI | Zbl

[14] Hillen, T.; Painter, K.J. A user's guide to PDE models for chemotaxis, J. Math. Biol., Volume 58 (2009), pp. 183–217 | DOI | Zbl

[15] S. Ishida, Global existence for chemotaxis–Navier–Stokes systems with rotation in 2D bounded domains, preprint.

[16] Kiselev, A.; Ryzhik, L. Biomixing by chemotaxis and enhancement of biological reactions, Commun. Partial Differ. Equ., Volume 37 (2012) no. 1–3, pp. 298–318 | Zbl

[17] Ladyzenskaja, O.A.; Solonnikov, V.A.; Ural'ceva, N.N. Linear and Quasi-Linear Equations of Parabolic Type, Amer. Math. Soc. Transl., vol. 23, Amer. Math. Soc., Providence, RI, 1968 | Zbl

[18] Leray, J. Sur le mouvement d'un liquide visqueus amplissant l'espace, Acta Math., Volume 63 (1934), pp. 193–248 | DOI | JFM

[19] Lions, P.L. Résolution de problèmes elliptiques quasilinéaires, Arch. Ration. Mech. Anal., Volume 74 (1980), pp. 335–353 | DOI | Zbl

[20] Liu, J.-G.; Lorz, A. A coupled chemotaxis–fluid model: global existence, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 28 (2011) no. 5, pp. 643–652 | Numdam | Zbl

[21] Lorz, A. Coupled chemotaxis fluid model, Math. Models Methods Appl. Sci., Volume 20 (2010), pp. 987–1004 | DOI | Zbl

[22] Lorz, A. A coupled Keller–Segel–Stokes model: global existence for small initial data and blow-up delay, Commun. Math. Sci., Volume 10 (2012), pp. 555–574 | DOI | Zbl

[23] Miyakawa, T.; Sohr, H. On energy inequality, smoothness and large time behaviour in L2 for weak solutions of the Navier–Stokes equations, Math. Z., Volume 199 (1988), pp. 465–478 | DOI | Zbl

[24] N. Mizoguchi, M. Winkler, Blow-up in the two-dimensional parabolic Keller–Segel system, preprint.

[25] Nagai, T.; Senba, T.; Yoshida, K. Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, Ser. Int., Volume 40 (1997), pp. 411–433 | Zbl

[26] Osaki, K.; Yagi, A. Finite dimensional attractor for one-dimensional Keller–Segel equations, Funkc. Ekvacioj, Volume 44 (2001), pp. 441–469 | Zbl

[27] Quittner, P.; Souplet, Ph. Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts, Birkhäuser, Basel/Boston/Berlin, 2007 | Zbl

[28] Sohr, H. The Navier–Stokes Equations. An Elementary Functional Analytic Approach, Birkhäuser, Basel, 2001 | Zbl

[29] Solonnikov, V.A. Schauder estimates for the evolutionary generalized Stokes problem, Nonlinear Equations and Spectral Theory, Amer. Math. Soc. Transl., Series 2, vol. 220, Amer. Math. Soc., Providence, RI, 2007, pp. 165–200 | DOI | Zbl

[30] Y. Tao, Boundedness in a Keller–Segel–Stokes system modeling the process of coral fertilization, preprint.

[31] Tao, Y.; Winkler, M. Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differ. Equ., Volume 252 (2012), pp. 2520–2543 | Zbl

[32] Tao, Y.; Winkler, M. Global existence and boundedness in a Keller–Segel–Stokes model with arbitrary porous medium diffusion, Discrete Contin. Dyn. Syst., Ser. A, Volume 32 (2012) no. 5, pp. 1901–1914 | Zbl

[33] Tao, Y.; Winkler, M. Locally bounded global solutions in a three-dimensional chemotaxis–Stokes system with nonlinear diffusion, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 30 (2013) no. 1, pp. 157–178 | Numdam | Zbl

[34] Temam, R. Navier–Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, vol. 2, North-Holland, Amsterdam, 1977 | Zbl

[35] Tuval, I.; Cisneros, L.; Dombrowski, C.; Wolgemuth, C.W.; Kessler, J.O.; Goldstein, R.E. Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, Volume 102 (2005), pp. 2277–2282 | DOI | Zbl

[36] Vorotnikov, D. Weak solutions for a bioconvection model related to Bacillus subtilis, Commun. Math. Sci., Volume 12 (2014), pp. 545–563 | DOI | Zbl

[37] Wiegner, M. The Navier–Stokes equations – a neverending challenge?, Jahresber. Dtsch. Math.-Ver., Volume 101 (1999), pp. 1–25 | Zbl

[38] Winkler, M. Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Differ. Equ., Volume 248 (2010), pp. 2889–2905 | DOI | Zbl

[39] Winkler, M. Global large-data solutions in a chemotaxis–(Navier–)Stokes system modeling cellular swimming in fluid drops, Commun. Partial Differ. Equ., Volume 37 (2012), pp. 319–351 | DOI | Zbl

[40] Winkler, M. Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system, J. Math. Pures Appl., Volume 100 (2013), pp. 748–767 | arXiv | DOI | Zbl

[41] Winkler, M. Stabilization in a two-dimensional chemotaxis–Navier–Stokes system, Arch. Ration. Mech. Anal., Volume 211 (2014) no. 2, pp. 455–487 | DOI | Zbl

[42] M. Winkler, Boundedness and large time behavior in a three-dimensional chemotaxis–Stokes system with nonlinear diffusion and general sensitivity, preprint.

Cited by Sources: