Optimal magnetic Sobolev constants in the semiclassical limit
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 5, pp. 1199-1222.

This paper is devoted to the semiclassical analysis of the best constants in the magnetic Sobolev embeddings in the case of a bounded domain of the plane carrying Dirichlet conditions. We provide quantitative estimates of these constants (with an explicit dependence on the semiclassical parameter) and analyze the exponential localization in L-norm of the corresponding minimizers near the magnetic wells.

DOI : 10.1016/j.anihpc.2015.03.008
Mots clés : Nonlinear Schrödinger equation, Semiclassical, Magnetic
@article{AIHPC_2016__33_5_1199_0,
     author = {Fournais, S. and Raymond, N.},
     title = {Optimal magnetic {Sobolev} constants in the semiclassical limit},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1199--1222},
     publisher = {Elsevier},
     volume = {33},
     number = {5},
     year = {2016},
     doi = {10.1016/j.anihpc.2015.03.008},
     mrnumber = {3542611},
     zbl = {1350.35006},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2015.03.008/}
}
TY  - JOUR
AU  - Fournais, S.
AU  - Raymond, N.
TI  - Optimal magnetic Sobolev constants in the semiclassical limit
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 1199
EP  - 1222
VL  - 33
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2015.03.008/
DO  - 10.1016/j.anihpc.2015.03.008
LA  - en
ID  - AIHPC_2016__33_5_1199_0
ER  - 
%0 Journal Article
%A Fournais, S.
%A Raymond, N.
%T Optimal magnetic Sobolev constants in the semiclassical limit
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 1199-1222
%V 33
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2015.03.008/
%R 10.1016/j.anihpc.2015.03.008
%G en
%F AIHPC_2016__33_5_1199_0
Fournais, S.; Raymond, N. Optimal magnetic Sobolev constants in the semiclassical limit. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 5, pp. 1199-1222. doi : 10.1016/j.anihpc.2015.03.008. http://www.numdam.org/articles/10.1016/j.anihpc.2015.03.008/

[1] Agmon, S. Schrödinger Operators, Lecture Notes in Math., Volume vol. 1159, Springer, Berlin (1985), pp. 1–38 (Como, 1984) | DOI | MR | Zbl

[2] Avron, J.; Herbst, I.; Simon, B. Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J., Volume 45 (1978) no. 4, pp. 847–883 | DOI | MR | Zbl

[3] Cycon, H.L.; Froese, R.G.; Kirsch, W.; Simon, B. Schrödinger operators with application to quantum mechanics and global geometry, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987 (study edition) | MR | Zbl

[4] del Pino, M.; Felmer, P.L. Semi-classical states for nonlinear Schrödinger equations, J. Funct. Anal., Volume 149 (1997) no. 1, pp. 245–265 | DOI | MR | Zbl

[5] Di Cosmo, J.; Van Schaftingen, J. Semiclassical stationary states for nonlinear Schrödinger equations with a strong external magnetic field, J. Differ. Equ. (2015) (in press) | DOI | MR | Zbl

[6] Dombrowski, N.; Raymond, N. Semiclassical analysis with vanishing magnetic fields, J. Spectr. Theory, Volume 3 (2013) no. 3 | DOI | MR | Zbl

[7] Esteban, M.J.; Lions, P.-L. Stationary solutions of nonlinear Schrödinger equations with an external magnetic field, Partial Differential Equations and the Calculus of Variations, Vol. I, Progr. Nonlinear Differential Equations Appl., vol. 1, Birkhäuser Boston, Boston, MA, 1989, pp. 401–449 | MR

[8] Fournais, S.; Helffer, B. Spectral Methods in Surface Superconductivity, Progress in Nonlinear Differential Equations and Their Applications, vol. 77, Birkhäuser Boston Inc., Boston, MA, 2010 | DOI | MR | Zbl

[9] Fournais, S.; Persson, M. A uniqueness theorem for higher order anharmonic oscillators, J. Spectr. Theory (2015) (in press) | DOI | MR | Zbl

[10] Helffer, B. Semi-classical Analysis for the Schrödinger Operator and Applications, Lecture Notes in Mathematics, vol. 1336, Springer-Verlag, Berlin, 1988 | DOI | MR | Zbl

[11] B. Helffer, Y.A. Kordyukov, Semiclassical spectral asymptotics for a magnetic Schrödinger operator with non-vanishing magnetic field, 2014, preprint. | MR

[12] Helffer, B.; Mohamed, A. Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells, J. Funct. Anal., Volume 138 (1996) no. 1, pp. 40–81 | DOI | MR | Zbl

[13] Helffer, B.; Morame, A. Magnetic bottles in connection with superconductivity, J. Funct. Anal., Volume 185 (2001) no. 2, pp. 604–680 | DOI | MR | Zbl

[14] Helffer, B.; Sjöstrand, J. Multiple wells in the semiclassical limit. I, Commun. Partial Differ. Equ., Volume 9 (1984) no. 4, pp. 337–408 | DOI | MR | Zbl

[15] Kurata, K. Existence and semi-classical limit of the least energy solution to a nonlinear Schrödinger equation with electromagnetic fields, Nonlinear Anal. Ser. A: Theory Methods, Volume 41 (2000) no. 5–6, pp. 763–778 | MR | Zbl

[16] Lions, P.-L. The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 1 (1984) no. 2, pp. 109–145 | Numdam | MR | Zbl

[17] Lions, P.-L. The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 1 (1984) no. 4, pp. 223–283 | Numdam | MR | Zbl

[18] Montgomery, R. Hearing the zero locus of a magnetic field, Commun. Math. Phys., Volume 168 (1995) no. 3, pp. 651–675 | DOI | MR | Zbl

[19] Persson, A. Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator, Math. Scand., Volume 8 (1960), pp. 143–153 | DOI | MR | Zbl

[20] Raymond, N. Little magnetic book, 2014 | arXiv

[21] Reed, M.; Simon, B. Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1978 | MR | Zbl

[22] Wang, X. On concentration of positive bound states of nonlinear Schrödinger equations, Commun. Math. Phys., Volume 153 (1993) no. 2, pp. 229–244 | DOI | MR | Zbl

Cité par Sources :