Annealed estimates on the Green functions and uncertainty quantification
Annales de l'I.H.P. Analyse non linéaire, Volume 33 (2016) no. 5, pp. 1153-1197.

We prove Lipschitz bounds for linear elliptic equations in divergence form whose measurable coefficients are random stationary and satisfy a logarithmic Sobolev inequality, extending to the continuum setting results by Otto and the second author for discrete elliptic equations. This improves the celebrated De Giorgi–Nash–Moser theory in the large (that is, away from the singularity) for this class of coefficients. This regularity result is obtained as a corollary of optimal decay estimates on the derivative and mixed second derivative of the elliptic Green functions on Rd. As another application of these decay estimates we derive optimal estimates on the fluctuations of solutions of linear elliptic PDEs with “noisy” diffusion coefficients.

DOI: 10.1016/j.anihpc.2015.04.001
Classification: 35J08, 35J15, 60K37, 60H25, 35B65
Keywords: Green's functions, Elliptic equations, Annealed estimates, Uncertainty quantification, Regularity theory
@article{AIHPC_2016__33_5_1153_0,
     author = {Gloria, Antoine and Marahrens, Daniel},
     title = {Annealed estimates on the {Green} functions and uncertainty quantification},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1153--1197},
     publisher = {Elsevier},
     volume = {33},
     number = {5},
     year = {2016},
     doi = {10.1016/j.anihpc.2015.04.001},
     mrnumber = {3542610},
     zbl = {1351.35027},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2015.04.001/}
}
TY  - JOUR
AU  - Gloria, Antoine
AU  - Marahrens, Daniel
TI  - Annealed estimates on the Green functions and uncertainty quantification
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 1153
EP  - 1197
VL  - 33
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2015.04.001/
DO  - 10.1016/j.anihpc.2015.04.001
LA  - en
ID  - AIHPC_2016__33_5_1153_0
ER  - 
%0 Journal Article
%A Gloria, Antoine
%A Marahrens, Daniel
%T Annealed estimates on the Green functions and uncertainty quantification
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 1153-1197
%V 33
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2015.04.001/
%R 10.1016/j.anihpc.2015.04.001
%G en
%F AIHPC_2016__33_5_1153_0
Gloria, Antoine; Marahrens, Daniel. Annealed estimates on the Green functions and uncertainty quantification. Annales de l'I.H.P. Analyse non linéaire, Volume 33 (2016) no. 5, pp. 1153-1197. doi : 10.1016/j.anihpc.2015.04.001. http://www.numdam.org/articles/10.1016/j.anihpc.2015.04.001/

[1] Armstrong, S.N.; Smart, C.K. Quantitative stochastic homogenization of convex integral functionals, Ann. Sci. Éc. Norm. Super. (2015) (in press) | MR

[2] Avellaneda, M.; Lin, F.-H. Compactness methods in the theory of homogenization, Commun. Pure Appl. Math., Volume 40 (1987) no. 6, pp. 803–847 | DOI | MR | Zbl

[3] Avellaneda, M.; Lin, F.-H. Lp bounds on singular integrals in homogenization, Commun. Pure Appl. Math., Volume 44 (1991) no. 8–9, pp. 897–910 | MR | Zbl

[4] Bal, G. Central limits and homogenization in random media, Multiscale Model. Simul., Volume 7 (2008), pp. 677–702 | MR | Zbl

[5] Bella, P.; Otto, F. Corrector estimates for elliptic systems with random periodic coefficients | arXiv | DOI | Zbl

[6] Conlon, J.G.; Naddaf, A. On homogenization of elliptic equations with random coefficients, Electron. J. Probab., Volume 5 (2000), pp. 1–58 (paper no. 9) | DOI | MR | Zbl

[7] Delmotte, T.; Deuschel, J.-D. On estimating the derivatives of symmetric diffusions in stationary random environments, with applications to the ∇ϕ interface model, Probab. Theory Relat. Fields, Volume 133 (2005), pp. 358–390 | DOI | MR | Zbl

[8] Figari, R.; Orlandi, E.; Papanicolaou, G. Mean field and Gaussian approximation for partial differential equations with random coefficients, SIAM J. Appl. Math., Volume 42 (1982), pp. 1069–1077 | DOI | MR | Zbl

[9] Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001 (reprint of the 1998 edition) | MR | Zbl

[10] Gloria, A. Fluctuation of solutions to linear elliptic equations with noisy diffusion coefficients, Commun. Partial Differ. Equ., Volume 38 (2013) no. 2, pp. 304–338 | DOI | MR | Zbl

[11] Gloria, A.; Neukamm, S.; Otto, F. An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations, ESAIM Math. Model. Numer. Anal., Volume 48 (2014) no. 2, pp. 325–346 | DOI | Numdam | MR | Zbl

[12] Gloria, A.; Neukamm, S.; Otto, F. Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics, Invent. Math., Volume 199 (2015) no. 2, pp. 455–515 | DOI | MR | Zbl

[13] Gloria, A.; Otto, F. Quantitative results on the corrector equation in stochastic homogenization | arXiv | DOI | Zbl

[14] Gloria, A.; Otto, F. An optimal variance estimate in stochastic homogenization of discrete elliptic equations, Ann. Probab., Volume 39 (2011) no. 3, pp. 779–856 | DOI | MR | Zbl

[15] Grüter, M.; Widman, K.-O. The Green function for uniformly elliptic equations, Manuscr. Math., Volume 37 (1982), pp. 303–342 | DOI | MR | Zbl

[16] Han, Q.; Lin, F. Elliptic Partial Differential Equations, Courant Institute of Mathematical Sciences, New York, 1997 | MR | Zbl

[17] Marahrens, D.; Otto, F. Annealed estimates on the Green function, Probab. Theory Relat. Fields (2014) | DOI | MR | Zbl

[18] Marahrens, D.; Otto, F. On annealed elliptic Green function estimates | arXiv

[19] Meyers, N. An Lp-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (3), Volume 17 (1963) no. 3, pp. 189–206 | Numdam | MR | Zbl

[20] Papanicolaou, G.C.; Varadhan, S.R.S. Random Fields, vols. I, II, Colloq. Math. Soc. János Bolyai, Volume vol. 27, North-Holland, Amsterdam (1981), pp. 835–873 (Esztergom, 1979) | MR | Zbl

Cited by Sources: