Energy estimates and symmetry breaking in attractive Bose–Einstein condensates with ring-shaped potentials
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 3, pp. 809-828.

This paper is concerned with the properties of L2-normalized minimizers of the Gross–Pitaevskii (GP) functional for a two-dimensional Bose–Einstein condensate with attractive interaction and ring-shaped potential. By establishing some delicate estimates on the least energy of the GP functional, we prove that symmetry breaking occurs for the minimizers of the GP functional as the interaction strength a>0 approaches a critical value a, each minimizer of the GP functional concentrates to a point on the circular bottom of the potential well and then is non-radially symmetric as aa. However, when a>0 is suitably small we prove that the minimizers of the GP functional are unique, and this unique minimizer is radially symmetric.

DOI : 10.1016/j.anihpc.2015.01.005
Classification : 35J60, 35Q40, 46N50
Mots clés : Nonlinear elliptic equation, Constrained minimization, Gross–Pitaevskii functional, Bose–Einstein condensates, Attractive interactions, Ring-shaped potential
@article{AIHPC_2016__33_3_809_0,
     author = {Guo, Yujin and Zeng, Xiaoyu and Zhou, Huan-Song},
     title = {Energy estimates and symmetry breaking in attractive {Bose{\textendash}Einstein} condensates with ring-shaped potentials},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {809--828},
     publisher = {Elsevier},
     volume = {33},
     number = {3},
     year = {2016},
     doi = {10.1016/j.anihpc.2015.01.005},
     zbl = {1341.35053},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2015.01.005/}
}
TY  - JOUR
AU  - Guo, Yujin
AU  - Zeng, Xiaoyu
AU  - Zhou, Huan-Song
TI  - Energy estimates and symmetry breaking in attractive Bose–Einstein condensates with ring-shaped potentials
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 809
EP  - 828
VL  - 33
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2015.01.005/
DO  - 10.1016/j.anihpc.2015.01.005
LA  - en
ID  - AIHPC_2016__33_3_809_0
ER  - 
%0 Journal Article
%A Guo, Yujin
%A Zeng, Xiaoyu
%A Zhou, Huan-Song
%T Energy estimates and symmetry breaking in attractive Bose–Einstein condensates with ring-shaped potentials
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 809-828
%V 33
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2015.01.005/
%R 10.1016/j.anihpc.2015.01.005
%G en
%F AIHPC_2016__33_3_809_0
Guo, Yujin; Zeng, Xiaoyu; Zhou, Huan-Song. Energy estimates and symmetry breaking in attractive Bose–Einstein condensates with ring-shaped potentials. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 3, pp. 809-828. doi : 10.1016/j.anihpc.2015.01.005. http://www.numdam.org/articles/10.1016/j.anihpc.2015.01.005/

[1] Anderson, M.H.; Ensher, J.R.; Matthews, M.R.; Wieman, C.E.; Cornell, E.A. Observation of Bose–Einstein condensation in a dilute atomic vapor, Science, Volume 269 (1995), pp. 198–201 | DOI

[2] Bao, W.Z.; Cai, Y.Y. Mathematical theory and numerical methods for Bose–Einstein condensation, Kinet. Relat. Models, Volume 6 (2013), pp. 1–135 | Zbl

[3] Cazenave, T. Semilinear Schrödinger Equations, Courant Lecture Notes in Math., vol. 10, Courant Institute of Mathematical Science/AMS, New York, 2003 | DOI | Zbl

[4] Choi, D.I.; Niu, Q. Bose Einstein condensation in an optical lattice, Phys. Rev. Lett., Volume 82 (1999), pp. 2022–2025

[5] Crandall, M.G.; Rabinowitz, P.H. Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Ration. Mech. Anal., Volume 52 (1973), pp. 161–180 | DOI | Zbl

[6] Dalfovo, F.; Giorgini, S.; Pitaevskii, L.P.; Stringari, S. Theory of Bose–Einstein condensation in trapped gases, Rev. Mod. Phys., Volume 71 (1999), pp. 463–512 | DOI

[7] Ding, Y.H.; Li, S.J. Homoclinic orbits for first order Hamiltonian systems, J. Math. Anal. Appl., Volume 189 (1995), pp. 585–601 | Zbl

[8] Erdős, L.; Schlein, B.; Yau, H.T. Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensate, Ann. Math., Volume 172 (2010), pp. 291–370 | DOI | Zbl

[9] Gidas, B.; Ni, W.M.; Nirenberg, L. Symmetry of positive solutions of nonlinear elliptic equations in Rn , Mathematical Analysis and Applications Part A, Adv. in Math. Suppl. Stud., vol. 7, Academic Press, New York, 1981, pp. 369–402 | Zbl

[10] Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order, Springer, 1997

[11] Gross, E.P. Structure of a quantized vortex in boson systems, Nuovo Cimento, Volume 20 (1961), pp. 454–466 | DOI | Zbl

[12] Gross, E.P. Hydrodynamics of a superfluid condensate, J. Math. Phys., Volume 4 (1963), pp. 195–207 | DOI

[13] Guo, Y.J.; Seiringer, R. On the mass concentration for Bose–Einstein condensates with attractive interactions, Lett. Math. Phys., Volume 104 (2014), pp. 141–156 | Zbl

[14] Gupta, S.; Murch, K.W.; Moore, K.L.; Purdy, T.P.; Stamper-Kurn, D.M. Bose–Einstein condensation in a circular waveguide, Phys. Rev. Lett., Volume 95 (2005), pp. 143201 | DOI

[15] Halkyard, P.L. Dynamics in cold atomic gases: resonant behaviour of the quantum delta-kicked accelerator and Bose–Einstein condensates in ring traps, Durham University, 2010 (Ph.D. Thesis)

[16] Halkyard, P.L.; Jones, M.P.A.; Gardiner, S.A. Rotational response of two-component Bose–Einstein condensates in ring traps, Phys. Rev. A, Volume 81 (2010), pp. 061602(R) | DOI

[17] Han, Q.; Lin, F.H. Elliptic Partial Differential Equations, Courant Lect. Notes Math., vol. 1, Courant Institute of Mathematical Science/AMS, New York, 2011 | Zbl

[18] Kavian, O.; Weissler, F.B. Self-similar solutions of the pseudo-conformally invariant nonlinear Schrödinger equation, Mich. Math. J., Volume 41 (1994) no. 1, pp. 151–173 | DOI | Zbl

[19] Kwong, M.K. Uniqueness of positive solutions of Δuu+up=0 in RN , Arch. Ration. Mech. Anal., Volume 105 (1989), pp. 243–266 | Zbl

[20] Li, Y.; Ni, W.M. Radial symmetry of positive solutions of nonlinear elliptic equations in Rn , Commun. Partial Differ. Equ., Volume 18 (1993), pp. 1043–1054 | Zbl

[21] Lieb, E.H.; Loss, M. Analysis, Grad. Stud. in Math., vol. 14, Amer. Math. Soc., Providence, RI, 2001 | Zbl

[22] Lieb, E.H.; Seiringer, R. Proof of Bose–Einstein condensation for dilute trapped gases, Phys. Rev. Lett., Volume 88 (2002), pp. 170409-1–170409-4

[23] Lieb, E.H.; Seiringer, R.; Solovej, J.P.; Yngvason, J. The Mathematics of the Bose Gas and Its Condensation, Oberwolfach Seminars, vol. 34, Birkhäuser Verlag, Basel, 2005 | Zbl

[24] Lieb, E.H.; Seiringer, R.; Yngvason, J. Bosons in a trap: a rigorous derivation of the Gross–Pitaevskii energy functional, Phys. Rev. A, Volume 61 (2000), pp. 043602-1–043602-13

[25] Lieb, E.H.; Seiringer, R.; Yngvason, J. A rigorous derivation of the Gross–Pitaevskii energy functional for a two-dimensional Bose gas, Commun. Math. Phys., Volume 224 (2001), pp. 17–31 | Zbl

[26] Lions, P.L. The concentration-compactness principle in the calculus of variations. The locally compact case II, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 1 (1984), pp. 223–283 | Numdam | Zbl

[27] McLeod, K.; Serrin, J. Uniqueness of positive radial solutions of Δu+f(u)=0 in Rn , Arch. Ration. Mech. Anal., Volume 99 (1987), pp. 115–145 | DOI | Zbl

[28] Ni, W.-M.; Takagi, I. On the shape of least-energy solutions to a semilinear Neumann problem, Commun. Pure Appl. Math., Volume 44 (1991), pp. 819–851 | Zbl

[29] Pitaevskii, L.P. Vortex lines in an imperfect Bose gas, Sov. Phys. JETP, Volume 13 (1961), pp. 451–454

[30] Reed, M.; Simon, B. Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, New York–London, 1978 | MR | Zbl

[31] Ryu, C.; Andersen, M.F.; Cladé, P.; Natarajan, Vasant; Helmerson, K.; Phillips, W.D. Observation of persistent flow of a Bose–Einstein condensate in a toroidal trap, Phys. Rev. Lett., Volume 99 (2007), pp. 260401

[32] Smyrnakis, J.; Bargi, S.; Kavoulakis, G.M.; Magiropoulos, M.; Karkkainen, K.; Reimann, S.M. Mixtures of Bose gases confined in a ring potential, Phys. Rev. Lett., Volume 103 (2009), pp. 100404 | DOI

[33] Stuart, C.A.; Ambrosetti, A.; Chang, K.-C.; Ekeland, I. An introduction to elliptic equations on RN , Nonlinear Functional Analysis and Applications to Differential Equations, World Scientific, Singapore, 1998 | MR | Zbl

[34] Wang, X.F. On concentration of positive bound states of nonlinear Schrödinger equations, Commun. Math. Phys., Volume 153 (1993), pp. 229–244 | MR | Zbl

[35] Weinstein, M.I. Nonlinear Schrödinger equations and sharp interpolations estimates, Commun. Math. Phys., Volume 87 (1983), pp. 567–576 | DOI | MR | Zbl

Cité par Sources :