A Dirichlet problem involving the divergence operator
Annales de l'I.H.P. Analyse non linéaire, Volume 33 (2016) no. 3, pp. 829-848.

We consider the problem

{divu+a;u=fin Ωu=u0on Ω.
We show that if curla(x0)0 for some x0Ω, then the problem is solvable without restriction on f. We also discuss the regularity of the solution.

DOI: 10.1016/j.anihpc.2015.01.006
Keywords: Poincaré type lemma, Divergence operator, Boundary value problem
@article{AIHPC_2016__33_3_829_0,
     author = {Csat\'o, G. and Dacorogna, B.},
     title = {A {Dirichlet} problem involving the divergence operator},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {829--848},
     publisher = {Elsevier},
     volume = {33},
     number = {3},
     year = {2016},
     doi = {10.1016/j.anihpc.2015.01.006},
     zbl = {1338.35106},
     mrnumber = {3489636},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2015.01.006/}
}
TY  - JOUR
AU  - Csató, G.
AU  - Dacorogna, B.
TI  - A Dirichlet problem involving the divergence operator
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 829
EP  - 848
VL  - 33
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2015.01.006/
DO  - 10.1016/j.anihpc.2015.01.006
LA  - en
ID  - AIHPC_2016__33_3_829_0
ER  - 
%0 Journal Article
%A Csató, G.
%A Dacorogna, B.
%T A Dirichlet problem involving the divergence operator
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 829-848
%V 33
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2015.01.006/
%R 10.1016/j.anihpc.2015.01.006
%G en
%F AIHPC_2016__33_3_829_0
Csató, G.; Dacorogna, B. A Dirichlet problem involving the divergence operator. Annales de l'I.H.P. Analyse non linéaire, Volume 33 (2016) no. 3, pp. 829-848. doi : 10.1016/j.anihpc.2015.01.006. http://www.numdam.org/articles/10.1016/j.anihpc.2015.01.006/

[1] Agmon, S.; Douglis, A.; Nirenberg, L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Commun. Pure Appl. Math., Volume 12 (1959), pp. 623–727 | DOI | MR | Zbl

[2] Bogovski, M.E. Solution of the first boundary value problem for the equation of continuity of an incompressible medium, Sov. Math. Dokl., Volume 20 (1979), pp. 1094–1098 | MR | Zbl

[3] Borchers, W.; Sohr, H. On the equations rotv=g and divu=f with zero boundary conditions, Hokkaido Math. J., Volume 19 (1990), pp. 67–87 | DOI | MR | Zbl

[4] Csató, G.; Dacorogna, B.; Kneuss, O. The Pullback Equation for Differential Forms, Birkhäuser/Springer, New York, 2012 | DOI | MR | Zbl

[5] Dacorogna, B. Existence and regularity of solutions of dw=f with Dirichlet boundary conditions, Nonlinear Problems in Mathematical Physics and Related Topics, Kluwer/Plenum, New York, 2002, pp. 67–82 | MR | Zbl

[6] Dacorogna, B. Direct Methods in the Calculus of Variations, Springer, 2007 | MR | Zbl

[7] Dacorogna, B.; Moser, J. On a partial differential equation involving the Jacobian determinant, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 7 (1990), pp. 1–26 | DOI | Numdam | MR | Zbl

[8] Dautray, R.; Lions, J.L. Analyse mathématique et calcul numérique, Masson, Paris, 1988

[9] Galdi, G.P. An Introduction to the Mathematical Theory of the Navier–Stokes Equations, Springer, New York, 1994 | MR | Zbl

[10] Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1977 | DOI | MR | Zbl

[11] Girault, V.; Raviart, P.A. Finite Element Approximation of the Navier–Stokes Equations, Lect. Notes Math., vol. 749, Springer, Berlin, 1979 | DOI | MR | Zbl

[12] Kapitanskii, L.V.; Pileckas, K. Certain problems of vector analysis, J. Sov. Math., Volume 32 (1986), pp. 469–483 | DOI | Zbl

[13] Ladyzhenskaya, O.A. The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 1969 | MR

[14] Ladyzhenskaya, O.A.; Solonnikov, V.A. Some problems of vector analysis and generalized formulations of boundary value problems for the Navier–Stokes equations, J. Sov. Math., Volume 10 (1978), pp. 257–286 | DOI | Zbl

[15] Necas, J. Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967 | MR | Zbl

[16] Tartar, L. Topics in Nonlinear Analysis, Univ. of Wisconsin, Madison, 1975

[17] Von Wahl, W. On necessary and sufficient conditions for the solvability of the equations rotu=γ and divu=ϵ with u vanishing on the boundary, Lect. Notes Math., vol. 1431, Springer, Berlin, 1990, pp. 152–157 | DOI | MR | Zbl

[18] Von Wahl, W. Vorlesung über das Aussenraumproblem für die instationären Gleichungen von Navier–Stokes, Bonn, 1989

Cited by Sources: