On the analysis of a coupled kinetic-fluid model with local alignment forces
Annales de l'I.H.P. Analyse non linéaire, Volume 33 (2016) no. 2, pp. 273-307.

This paper studies global existence, hydrodynamic limit, and large-time behavior of weak solutions to a kinetic flocking model coupled to the incompressible Navier–Stokes equations. The model describes the motion of particles immersed in a Navier–Stokes fluid interacting through local alignment. We first prove the existence of weak solutions using energy and Lp estimates together with the velocity averaging lemma. We also rigorously establish a hydrodynamic limit corresponding to strong noise and local alignment. In this limit, the dynamics can be totally described by a coupled compressible Euler – incompressible Navier–Stokes system. The proof is via relative entropy techniques. Finally, we show a conditional result on the large-time behavior of classical solutions. Specifically, if the mass-density satisfies a uniform in time integrability estimate, then particles align with the fluid velocity exponentially fast without any further assumption on the viscosity of the fluid.

DOI: 10.1016/j.anihpc.2014.10.002
Keywords: Kinetic-fluid coupled equations, Asymptotic behavior, Flocking, Hydrodynamical limit
@article{AIHPC_2016__33_2_273_0,
     author = {Carrillo, Jos\'e A. and Choi, Young-Pil and Karper, Trygve K.},
     title = {On the analysis of a coupled kinetic-fluid model with local alignment forces},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {273--307},
     publisher = {Elsevier},
     volume = {33},
     number = {2},
     year = {2016},
     doi = {10.1016/j.anihpc.2014.10.002},
     zbl = {1339.35233},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2014.10.002/}
}
TY  - JOUR
AU  - Carrillo, José A.
AU  - Choi, Young-Pil
AU  - Karper, Trygve K.
TI  - On the analysis of a coupled kinetic-fluid model with local alignment forces
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 273
EP  - 307
VL  - 33
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2014.10.002/
DO  - 10.1016/j.anihpc.2014.10.002
LA  - en
ID  - AIHPC_2016__33_2_273_0
ER  - 
%0 Journal Article
%A Carrillo, José A.
%A Choi, Young-Pil
%A Karper, Trygve K.
%T On the analysis of a coupled kinetic-fluid model with local alignment forces
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 273-307
%V 33
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2014.10.002/
%R 10.1016/j.anihpc.2014.10.002
%G en
%F AIHPC_2016__33_2_273_0
Carrillo, José A.; Choi, Young-Pil; Karper, Trygve K. On the analysis of a coupled kinetic-fluid model with local alignment forces. Annales de l'I.H.P. Analyse non linéaire, Volume 33 (2016) no. 2, pp. 273-307. doi : 10.1016/j.anihpc.2014.10.002. http://www.numdam.org/articles/10.1016/j.anihpc.2014.10.002/

[1] Bae, H.-O.; Choi, Y.-P.; Ha, S.-Y.; Kang, M.-J. Global existence of strong solution for the Cucker–Smale–Navier–Stokes system, J. Differ. Equ., Volume 257 (2014), pp. 2225–2255 | Zbl

[2] Bae, H.-O.; Choi, Y.-P.; Ha, S.-Y.; Kang, M.-J. Asymptotic flocking dynamics of Cucker–Smale particles immersed in compressible fluids, Discrete Contin. Dyn. Syst., Ser. A, Volume 34 (2014), pp. 4419–4458 | Zbl

[3] Boudin, L.; Desvillettes, L.; Grandmont, C.; Moussa, A. Global existence of solution for the coupled Vlasov and Naiver–Stokes equations, Differ. Integral Equ., Volume 22 (2009), pp. 1247–1271 | Zbl

[4] Cañizo, J.A.; Carrillo, J.A.; Rosado, J. A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci., Volume 21 (2011), pp. 515–539 | DOI | Zbl

[5] Carrillo, J.A.; Duan, R.; Moussa, A. Global classical solutions close to the equilibrium to the Vlasov–Fokker–Planck–Euler system, Kinet. Relat. Models, Volume 4 (2011), pp. 227–258 | DOI | Zbl

[6] Carrillo, J.A.; Fornasier, M.; Rosado, J.; Toscani, G. Asymptotic flocking dynamics for the kinetic Cucker–Smale model, SIAM J. Math. Anal., Volume 42 (2010), pp. 218–236 | DOI | Zbl

[7] Carrillo, J.A.; Fornasier, M.; Toscani, G.; Vecil, F.; Naldi, G.; Pareschi, L.; Toscani, G. Particle, kinetic, and hydrodynamic models of swarming, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Modelling and Simulation in Science and Technology, Birkhäuser, 2010, pp. 297–336 | DOI | Zbl

[8] Carrillo, J.A.; Goudon, T. Stability and asymptotic analysis of a fluid-particle interaction model, Commun. Partial Differ. Equ., Volume 31 (2006), pp. 1349–1379 | DOI | Zbl

[9] Cucker, F.; Smale, S. Emergent behavior in flocks, IEEE Trans. Autom. Control, Volume 52 (2007), pp. 852–862 | DOI | Zbl

[10] Dafermos, C.M. The second law of thermodynamics and stability, Arch. Ration. Mech. Anal., Volume 70 (1979), pp. 167–179 | DOI | Zbl

[11] Degond, P. Global existence of smooth solutions for the Vlasov–Fokker–Planck equation in 1 and 2 space dimensions, Ann. Sci. Éc. Norm. Super., Volume 19 (1986), pp. 519–542 | Numdam | Zbl

[12] Girault, V.; Raviart, P.-A. Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986 | DOI | Zbl

[13] Glassey, R. The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics, Philadelphia, 1996 | DOI | Zbl

[14] Goncalves, P.; Landim, C.; Toninelli, C. Hydrodynamic limit for a particle system with degenerate rates, Ann. Inst. Henri Poincaré Probab. Stat., Volume 45 (2009) no. 4, pp. 887–909 | DOI | Numdam | Zbl

[15] Goudon, T.; He, L.; Moussa, A.; Zhang, P. The Navier–Stokes–Vlasov–Fokker–Planck system near equilibrium, SIAM J. Math. Anal., Volume 42 (2010), pp. 2177–2202 | DOI | Zbl

[16] Goudon, T.; Jabin, P.-E.; Vasseur, A. Hydrodynamic limit for the Vlasov–Navier–Stokes equations: I. Light particles regime, Indiana Univ. Math. J., Volume 53 (2004), pp. 1495–1515 | Zbl

[17] Goudon, T.; Jabin, P.-E.; Vasseur, A. Hydrodynamic limit for the Vlasov–Navier–Stokes equations: II. Fine particles regime, Indiana Univ. Math. J., Volume 53 (2004), pp. 1517–1536 | Zbl

[18] Hamdache, K. Global existence and large time behavior of solutions for the Vlasov–Stokes equations, Jpn. J. Ind. Appl. Math., Volume 15 (1998), pp. 51–74 | DOI | Zbl

[19] Ha, S.-Y.; Liu, J.-G. A simple proof of Cucker–Smale flocking dynamics and mean field limit, Commun. Math. Sci., Volume 7 (2009), pp. 297–325 | Zbl

[20] Ha, S.-Y.; Tadmor, E. From particle to kinetic and hydrodynamic description of flocking, Kinet. Relat. Models, Volume 1 (2008), pp. 415–435 | Zbl

[21] Karper, T.K.; Mellet, A.; Trivisa, K. Existence of weak solutions to kinetic flocking models, SIAM J. Math. Anal., Volume 45 (2013) no. 1, pp. 215–243 | DOI | MR | Zbl

[22] Karper, T.K.; Mellet, A.; Trivisa, K. Hydrodynamic limit of the kinetic Cucker–Smale flocking model, Math. Models Methods Appl. Sci. (2014) | DOI | MR | Zbl

[23] Karper, T.K.; Mellet, A.; Trivisa, K. On strong local alignment in the kinetic Cucker–Smale model, Hyperbolic Conservation Laws and Related Analysis with Applications, Springer Proc. Math. Stat., vol. 49, 2014, pp. 227–242 | MR | Zbl

[24] Landim, C. Hydrodynamic limit of interacting particle systems, School and Conference on Probability Theory, ICTP Lect. Notes, vol. XVII, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004 57100 (electronic) | MR | Zbl

[25] Majda, A. Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, vol. 53, Springer-Verlag, New York, 1984 | DOI | MR | Zbl

[26] Mellet, A.; Vasseur, A. Global weak solutions for a Vlasov–Fokker–Planck/Navier–Stokes system of equations, Math. Models Methods Appl. Sci., Volume 17 (2007), pp. 1039–1063 | DOI | MR | Zbl

[27] Mellet, A.; Vasseur, A. Asymptotic analysis for a Vlasov–Fokker–Planck/compressible Navier–Stokes equations, Commun. Math. Phys., Volume 281 (2008), pp. 573–596 | DOI | MR | Zbl

[28] Motsch, S.; Tadmor, E. A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., Volume 141 (2011) no. 5, pp. 923–947 | DOI | MR | Zbl

[29] Yau, H.T. Relative entropy and hydrodynamics of Ginzburg–Landau models, Lett. Math. Phys., Volume 22 (1991) no. 1, pp. 6380 | MR | Zbl

Cited by Sources: