Existence and regularity of strict critical subsolutions in the stationary ergodic setting
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 2, pp. 243-272.

We prove that any continuous and convex stationary ergodic Hamiltonian admits critical subsolutions, which are strict outside the random Aubry set. They make up, in addition, a dense subset of all critical subsolutions with respect to a suitable metric. If the Hamiltonian is additionally assumed of Tonelli type, then there exist strict subsolutions of class C1,1 in RN. The proofs are based on the use of Lax–Oleinik semigroups and their regularizing properties in the stationary ergodic environment, as well as on a generalized notion of Aubry set.

DOI : 10.1016/j.anihpc.2014.09.010
Classification : 35D40, 35B27, 35F21, 49L25
Mots clés : Stationary ergodic setting, Weak KAM Theory, Homogenization, Viscosity solutions
@article{AIHPC_2016__33_2_243_0,
     author = {Davini, Andrea and Siconolfi, Antonio},
     title = {Existence and regularity of strict critical subsolutions in the stationary ergodic setting},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {243--272},
     publisher = {Elsevier},
     volume = {33},
     number = {2},
     year = {2016},
     doi = {10.1016/j.anihpc.2014.09.010},
     zbl = {1336.35114},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2014.09.010/}
}
TY  - JOUR
AU  - Davini, Andrea
AU  - Siconolfi, Antonio
TI  - Existence and regularity of strict critical subsolutions in the stationary ergodic setting
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 243
EP  - 272
VL  - 33
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2014.09.010/
DO  - 10.1016/j.anihpc.2014.09.010
LA  - en
ID  - AIHPC_2016__33_2_243_0
ER  - 
%0 Journal Article
%A Davini, Andrea
%A Siconolfi, Antonio
%T Existence and regularity of strict critical subsolutions in the stationary ergodic setting
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 243-272
%V 33
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2014.09.010/
%R 10.1016/j.anihpc.2014.09.010
%G en
%F AIHPC_2016__33_2_243_0
Davini, Andrea; Siconolfi, Antonio. Existence and regularity of strict critical subsolutions in the stationary ergodic setting. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 2, pp. 243-272. doi : 10.1016/j.anihpc.2014.09.010. http://www.numdam.org/articles/10.1016/j.anihpc.2014.09.010/

[1] Bardi, M.; Capuzzo Dolcetta, I. Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1997 (with appendices by Maurizio Falcone and Pierpaolo Soravia) | Zbl

[2] Barles, G. Solutions de viscositè des équations de Hamilton–Jacobi, Math. Appl., vol. 17, Springer-Verlag, Paris, 1994 | Zbl

[3] Bernard, P. Existence of C1,1 subsolution of the Hamilton–Jacobi equation on compact manifolds, Ann. Sci. Éc. Norm. Super., Volume 40 (2007), pp. 445–452 | Numdam | Zbl

[4] Buttazzo, G.; Giaquinta, M.; Hildebrandt, S. One-dimensional Variational Problems. An Introduction, Oxf. Lect. Ser. Math. Appl., vol. 15, The Clarendon Press, Oxford University Press, New York, 1998 | Zbl

[5] Cannarsa, P.; Sinestrari, C. Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control, Prog. Nonlinear Differ. Equ. Appl., vol. 58, Birkhäuser Boston, Inc., Boston, MA, 2004 | Zbl

[6] Clarke, F.H. Optimization and Nonsmooth Analysis, Class. Appl. Math., vol. 5, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990 | Zbl

[7] Contreras, G.; Iturriaga, R. Global minimizers of autonomous lagrangians, 22nd Brazilian Mathematics Colloquium, IMPA, Rio de Janeiro, 1999 | Zbl

[8] Dal Maso, G.; Frankowska, H. Value functions for Bolza problems with discontinuous Lagrangians and Hamilton–Jacobi inequalities, ESAIM Control Optim. Calc. Var., Volume 5 (2000), pp. 369–393 | Numdam | Zbl

[9] Davini, A. Bolza Problems with discontinuous Lagrangians and Lipschitz continuity of the value function, SIAM J. Control Optim., Volume 46 (2007) no. 5, pp. 1897–1921 | DOI | Zbl

[10] Davini, A.; Siconolfi, A. Weak KAM Theory topics in the stationary ergodic setting, Calc. Var. Partial Differ. Equ., Volume 44 (2012) no. 3–4, pp. 319–350 | Zbl

[11] Davini, A.; Siconolfi, A. Metric techniques for convex stationary ergodic Hamiltonians, Calc. Var. Partial Differ. Equ., Volume 40 (2011), pp. 391–421 | DOI | Zbl

[12] Davini, A.; Siconolfi, A. Exact and approximate correctors for stochastic Hamiltonians: the 1-dimensional case, Math. Ann., Volume 345 (2009) no. 4, pp. 749–782 | DOI | Zbl

[13] Davini, A.; Siconolfi, A. A generalized dynamical approach to the large time behavior of solutions of Hamilton–Jacobi equations, SIAM J. Math. Anal., Volume 38 (2006) no. 2, pp. 478–502 | DOI | Zbl

[14] Davini, A.; Zavidovique, M. Weak KAM theoretic aspects for nonregular commuting Hamiltonians, Discrete Contin. Dyn. Syst., Ser. B, Volume 18 (2013), pp. 1 | Zbl

[15] Davini, A.; Zavidovique, M. On the (non) existence of viscosity solutions of multi-time Hamilton–Jacobi equations, J. Differ. Equ. (2014) (in press) | DOI | Zbl

[16] Fathi, A. Weak Kam Theorem in Lagrangian Dynamics. Ghost Book, 2010

[17] Fathi, A. Weak KAM from a PDE point of view: viscosity solutions of the Hamilton–Jacobi equation and Aubry set, Proc. R. Soc. Edinb. A, Volume 142 (2012) no. 6, pp. 1193–1236 | DOI | Zbl

[18] Fathi, A.; Figalli, A. Optimal transportation on non-compact manifolds, Isr. J. Math., Volume 175 (2010), pp. 1–59 | DOI | Zbl

[19] Fathi, A.; Figalli, A.; Rifford, L. On the Hausdorff dimension of the Mather quotient, Commun. Pure Appl. Math., Volume 62 (2009) no. 4, pp. 445–500 | DOI | Zbl

[20] Fathi, A.; Siconolfi, A. Existence of C1 critical subsolutions of the Hamilton–Jacobi equation, Invent. Math., Volume 155 (2004), pp. 363–388 | DOI | Zbl

[21] Fathi, A.; Siconolfi, A. PDE aspects of Aubry–Mather theory for continuous convex Hamiltonians, Calc. Var. Partial Differ. Equ., Volume 22 (2005) no. 2, pp. 185–228 | DOI | Zbl

[22] Jikov, V.V.; Kozlov, S.M.; Oleinik, O.A. Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994 (translated from the Russian by G.A. Yosifian) | DOI | Zbl

[23] Lions, P.L.; Souganidis, P.E. Correctors for the homogenization of Hamilton–Jacobi equations in the stationary ergodic setting, Commun. Pure Appl. Math., Volume 56 (2003) no. 10, pp. 1501–1524 | DOI | Zbl

[24] Molchanov, I. Theory of Random Sets, Probab. Appl. (New York), Springer-Verlag London, Ltd., London, 2005 | Zbl

[25] Rezakhanlou, F.; Tarver, J.E. Homogenization for stochastic Hamilton–Jacobi equations, Arch. Ration. Mech. Anal., Volume 151 (2000) no. 4, pp. 277–309 | DOI | Zbl

[26] Souganidis, P.E. Stochastic homogenization of Hamilton–Jacobi equations and some applications, Asymptot. Anal., Volume 20 (1999) no. 1, pp. 1–11 | Zbl

[27] Tsirelson, B. Filtrations of random processes in the light of classification theory. I. A topological zero-one law, 2001 (preprint) | arXiv

Cité par Sources :