Classical non-mass-preserving solutions of coagulation equations
Annales de l'I.H.P. Analyse non linéaire, Volume 29 (2012) no. 4, pp. 589-635.

In this paper we construct classical solutions of a family of coagulation equations with homogeneous kernels that exhibit the behaviour known as gelation. This behaviour consists in the loss of mass due to the fact that some of the particles can become infinitely large in finite time.

@article{AIHPC_2012__29_4_589_0,
     author = {Escobedo, M. and Vel\'azquez, J.J.L.},
     title = {Classical non-mass-preserving solutions of coagulation equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {589--635},
     publisher = {Elsevier},
     volume = {29},
     number = {4},
     year = {2012},
     doi = {10.1016/j.anihpc.2012.03.001},
     mrnumber = {2948290},
     zbl = {1251.35082},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2012.03.001/}
}
TY  - JOUR
AU  - Escobedo, M.
AU  - Velázquez, J.J.L.
TI  - Classical non-mass-preserving solutions of coagulation equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2012
SP  - 589
EP  - 635
VL  - 29
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2012.03.001/
DO  - 10.1016/j.anihpc.2012.03.001
LA  - en
ID  - AIHPC_2012__29_4_589_0
ER  - 
%0 Journal Article
%A Escobedo, M.
%A Velázquez, J.J.L.
%T Classical non-mass-preserving solutions of coagulation equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2012
%P 589-635
%V 29
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2012.03.001/
%R 10.1016/j.anihpc.2012.03.001
%G en
%F AIHPC_2012__29_4_589_0
Escobedo, M.; Velázquez, J.J.L. Classical non-mass-preserving solutions of coagulation equations. Annales de l'I.H.P. Analyse non linéaire, Volume 29 (2012) no. 4, pp. 589-635. doi : 10.1016/j.anihpc.2012.03.001. http://www.numdam.org/articles/10.1016/j.anihpc.2012.03.001/

[1] T.A. Bak, O.J. Heilmann, Post-gelation solutions to Smoluchowskiʼs coagulation equation, J. Phys. A 27 no. 12 (1994), 4203-4209 | MR | Zbl

[2] A.M. Balk, V.E. Zakharov, Stability of weak-turbulence Kolmogorov spectra, V.E. Zakharov (ed.), Nonlinear Waves and Weak Turbulence, AMS Translations Series 2 vol. 182 (1998), 1-81 | MR | Zbl

[3] M.H. Ernst, R.M. Zi, E.M. Hendriks, Coagulation processes with a phase transition, J. Colloid Interface Sci. 97 (1984), 266-277

[4] M. Escobedo, P. Laurençot, S. Mischler, B. Perthame, Gelation and mass conservation in coagulation–fragmentation models, J. Differential Equations 195 no. 1 (2003), 143-174 | MR | Zbl

[5] M. Escobedo, S. Mischler, B. Perthame, Gelation in coagulation and fragmentation models, Comm. Math. Phys. 231 no. 1 (2002), 157-188 | MR | Zbl

[6] M. Escobedo, S. Mischler, J.J.L. Velázquez, On the fundamental solution of the linearized Uehling–Uhlenbeck equation, Arch. Ration. Mech. Anal. 186 (2007), 309-349 | MR | Zbl

[7] M. Escobedo, S. Mischler, J.J.L. Velázquez, Singular solutions for the Uehling–Uhlenbeck equation, Proc. Roy. Soc. Edinburgh Sect. A 138 (2008), 67-107 | MR | Zbl

[8] M. Escobedo, J.J.L. Velázquez, On the fundamental solution of a homogeneous linearized coagulation equation, Comm. Math. Phys. 3 no. 297 (2010), 759-816 | MR | Zbl

[9] M. Escobedo, J.J.L. Velázquez, Local well posedness for a linear coagulation equation, Trans. Amer. Math. Soc., in press. | MR

[10] N. Fournier, P. Laurençot, Marcus–Lushnikov processes, Smoluchowskiʼs and Floryʼs models, Stoch. Process. Appl. 119 (2009), 167-189 | MR | Zbl

[11] P.J. Flory, Molecular size distribution in three dimensional polymers. II. Trifunctional branching units, J. Amer. Chem. Soc. 63 (1941), 3091-3096

[12] I. Jeon, Existence of gelling solutions for coagulation–fragmentation equations, Comm. Math. Phys. 194 (1998), 541-567 | MR | Zbl

[13] R. Lacaze, P. Lallemand, Y. Pomeau, S. Rica, Dynamical formation of a Bose–Einstein condensate, Physica D 152–153 (2001), 779-786 | MR | Zbl

[14] P. Laurençot, On a class of continuous coagulation–fragmentation equations, J. Differential Equations 167 (2000), 245-274 | MR | Zbl

[15] X.G. Lu, A modified Boltzmann equation for Bose–Einstein particles: isotropic solutions and long time behavior, J. Stat. Phys. 98 (2000), 1335-1394 | MR | Zbl

[16] X.G. Lu, On isotropic distributional solutions to the Boltzmann equation for Bose–Einstein particles, J. Stat. Phys. 116 (2004), 1597-1649 | MR | Zbl

[17] J.B. Mcleod, On the scalar transport equation, Proc. London Math. Soc. 14 no. 3 (1964), 445-458 | MR | Zbl

[18] T. Runst, W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, de Gruyter, Berlin (1996) | MR | Zbl

[19] D.V. Semikov, I.I. Tkachev, Kinetics of Bose condensation, Phys. Rev. Lett. 74 (1995), 3093-3097

[20] D.V. Semikov, I.I. Tkachev, Condensation of bosons in the kinetic regime, Phys. Rev. D 55 no. 2 (1997), 489-502

[21] H. Spohn, Kinetics of the Bose–Einstein condensation, Physica D 239 (2010), 627-634 | MR | Zbl

[22] W.H. Stockmayer, Theory of molecular size distribution and gel formation in branched-chain polymers, J. Chem. Phys. 11 no. 2 (1943), 45-55

[23] H. Tanaka, S. Inaba, K. Nakaza, Steady-state size distribution for the self-similar collision cascade, Icarus 123 (1996), 450-455

Cited by Sources: