We address the persistence of Hölder continuity for weak solutions of the linear drift-diffusion equation with nonlocal pressure
Nous abordons la question de la persistance de la continuité Hölder pour les solutions faibles de lʼéquation linéaire de dérive-diffusion avec une pression non-locale
@article{AIHPC_2012__29_4_637_0, author = {Silvestre, Luis and Vicol, Vlad}, title = {H\"older continuity for a drift-diffusion equation with pressure}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {637--652}, publisher = {Elsevier}, volume = {29}, number = {4}, year = {2012}, doi = {10.1016/j.anihpc.2012.02.003}, mrnumber = {2948291}, zbl = {1252.35102}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2012.02.003/} }
TY - JOUR AU - Silvestre, Luis AU - Vicol, Vlad TI - Hölder continuity for a drift-diffusion equation with pressure JO - Annales de l'I.H.P. Analyse non linéaire PY - 2012 SP - 637 EP - 652 VL - 29 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2012.02.003/ DO - 10.1016/j.anihpc.2012.02.003 LA - en ID - AIHPC_2012__29_4_637_0 ER -
%0 Journal Article %A Silvestre, Luis %A Vicol, Vlad %T Hölder continuity for a drift-diffusion equation with pressure %J Annales de l'I.H.P. Analyse non linéaire %D 2012 %P 637-652 %V 29 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2012.02.003/ %R 10.1016/j.anihpc.2012.02.003 %G en %F AIHPC_2012__29_4_637_0
Silvestre, Luis; Vicol, Vlad. Hölder continuity for a drift-diffusion equation with pressure. Annales de l'I.H.P. Analyse non linéaire, Volume 29 (2012) no. 4, pp. 637-652. doi : 10.1016/j.anihpc.2012.02.003. http://www.numdam.org/articles/10.1016/j.anihpc.2012.02.003/
[1] Non-negative solutions of linear parabolic equations, Ann. Sc. Norm. Super. Pisa (3) 22 (1968), 607-694 | EuDML | Numdam | MR | Zbl
,[2] Propietà di hölderianità di alcune classi di funzioni, Ann. Sc. Norm. Super. Pisa (3) 17 (1963), 175-188 | EuDML | Numdam | MR | Zbl
,[3] Log improvement of the Prodi–Serrin criteria for Navier–Stokes equations, Methods Appl. Anal. 14 no. 2 (2007), 197-212 | MR | Zbl
, ,[4] Diffusion processes and second order elliptic operators with singular coefficients for lower order terms, Math. Ann. 302 no. 2 (1995), 323-357 | EuDML | MR | Zbl
, ,[5] The regularity of weak solutions of the 3D Navier–Stokes equations in , Arch. Ration. Mech. Anal. 195 no. 1 (2010), 159-169 | MR | Zbl
, ,[6] Regularity problem for the 3D Navier–Stokes equations: the use of Kolmogorovʼs dissipation range, arXiv:1102.1944v1 (2011) | Zbl
, ,[7] Global regularity for a modified critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J. 57 no. 6 (2008), 2681-2692 | MR | Zbl
, , ,[8] Sur le comportement global des solutions non-stationnaires des équations de Navier–Stokes en dimension 2, Rend. Sem. Mat. Univ. Padova 39 (1967), 1-34 | EuDML | Numdam | MR | Zbl
, ,[9] Global well-posedness for an advection–diffusion equation arising in magneto-geostrophic dynamics, Ann. Inst. H. Poincaré Anal. Non Linéaire 28 no. 2 (2011), 283-301 | Numdam | MR | Zbl
, ,[10] -solutions of Navier–Stokes equations and backward uniqueness, Uspekhi Mat. Nauk 58 no. 2(350) (2003), 3-44 | MR
, , ,[11] An alternative approach to regularity for the Navier–Stokes equations in critical spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire 28 no. 2 (2011), 159-187 | Numdam | MR | Zbl
, ,[12] Regularity and blow up for active scalars, Math. Model. Nat. Phenom. 5 no. 4 (2010), 225-255 | EuDML | MR | Zbl
,[13] Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math. 167 no. 3 (2007), 445-453 | MR | Zbl
, , ,[14] Regularity for the Navier–Stokes equations with a solution in a Morrey space, Indiana Univ. Math. J. 57 no. 6 (2008), 2843-2860 | MR | Zbl
,[15] Uniqueness and smoothness of generalized solutions of Navier–Stokes equations, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 5 (1967), 169-185 | EuDML | MR | Zbl
,[16] Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr. vol. 23, Amer. Math. Soc., Providence, RI (1967)
, , ,[17] Extra regularity for parabolic equations with drift terms, Manuscripta Math. 113 no. 2 (2004), 191-209 | MR | Zbl
, ,[18] On Harnackʼs theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577-591 | MR | Zbl
,[19] The Harnack inequality and related properties of solutions of elliptic and parabolic equations with divergence-free lower-order coefficients, Algebra i Analiz 23 no. 1 (2011), 136-168 | MR
, ,[20] Un teorema di unicità per le equazioni di Navier–Stokes, Ann. Mat. Pura Appl. (4) 48 (1959), 173-182 | MR | Zbl
,[21] Regularity theorems for parabolic equations, J. Funct. Anal. 231 no. 2 (2006), 375-417 | MR | Zbl
,[22] On divergence-free drifts, J. Differential Equations 252 no. 1 (2012), 505-540 | MR | Zbl
, , , ,[23] On the interior regularity of weak solutions of the Navier–Stokes equations, Arch. Ration. Mech. Anal. 9 (1962), 187-195 | MR | Zbl
,[24] Theory of Function Spaces. II, Monogr. Math. vol. 84, Birkhäuser-Verlag, Basel (1992) | MR | Zbl
,[25] Gaussian bounds for the fundamental solutions of , Manuscripta Math. 93 no. 3 (1997), 381-390 | EuDML | MR
,[26] Local estimates on two linear parabolic equations with singular coefficients, Pacific J. Math. 223 no. 2 (2006), 367-396 | MR | Zbl
,Cited by Sources: