@article{AIHPC_2007__24_4_605_0, author = {D'Aprile, Teresa and Wei, Juncheng}, title = {Clustered solutions around harmonic centers to a coupled elliptic system}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {605--628}, publisher = {Elsevier}, volume = {24}, number = {4}, year = {2007}, doi = {10.1016/j.anihpc.2006.04.003}, mrnumber = {2334995}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2006.04.003/} }
TY - JOUR AU - D'Aprile, Teresa AU - Wei, Juncheng TI - Clustered solutions around harmonic centers to a coupled elliptic system JO - Annales de l'I.H.P. Analyse non linéaire PY - 2007 SP - 605 EP - 628 VL - 24 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2006.04.003/ DO - 10.1016/j.anihpc.2006.04.003 LA - en ID - AIHPC_2007__24_4_605_0 ER -
%0 Journal Article %A D'Aprile, Teresa %A Wei, Juncheng %T Clustered solutions around harmonic centers to a coupled elliptic system %J Annales de l'I.H.P. Analyse non linéaire %D 2007 %P 605-628 %V 24 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2006.04.003/ %R 10.1016/j.anihpc.2006.04.003 %G en %F AIHPC_2007__24_4_605_0
D'Aprile, Teresa; Wei, Juncheng. Clustered solutions around harmonic centers to a coupled elliptic system. Annales de l'I.H.P. Analyse non linéaire, Volume 24 (2007) no. 4, pp. 605-628. doi : 10.1016/j.anihpc.2006.04.003. http://www.numdam.org/articles/10.1016/j.anihpc.2006.04.003/
[1] Semiclassical states of nonlinear Schrödinger equations, Arch. Rational Mech. Anal. 140 (1997) 285-300. | MR | Zbl
, , ,[2] Multiplicity results for some nonlinear Schrödinger equations with potentials, Arch. Rational Mech. Anal. 159 (3) (2001) 253-271. | MR | Zbl
, , ,[3] Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, I, Comm. Math. Phys. 235 (3) (2003) 427-466. | MR | Zbl
, , ,[4] Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, II, Indiana Univ. Math. J. 53 (2) (2004) 297-329. | MR | Zbl
, , ,[5] Harmonic radius and concentration of energy, hyperbolic radius and Liouville’s equations, and , SIAM Rev. 38 (2) (1996) 191-238. | MR | Zbl
, ,[6] An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal. 11 (2) (1998) 283-293. | Zbl
, ,[7] On the strict concavity of the harmonic radius in dimension , J. Math. Pures Appl. 81 (3) (2002) 223-240. | MR | Zbl
, ,[8] The Gierer & Meinhardt system: the breaking of homopclinics and multi-bump ground states, Commun. Contemp. Math. 3 (3) (2001) 419-439. | MR | Zbl
, , ,[9] Uniqueness of the ground state solution of in , , Comm. Partial Differential Equations 16 (8-9) (1991) 1549-1572. | Zbl
, ,[10] Solitary waves for Maxwell-Schrödinger equations, Electronic J. Differential Equations 2004 (94) (2004) 1-31. | Zbl
, ,[11] A note on asymptotic uniqueness for some nonlinearities which change sign, Bull. Austral. Math. Soc. 61 (2000) 305-312. | MR | Zbl
,[12] On the profile of solutions with two sharp layers to a singularly perturbed semilinear Dirichlet problem, Proc. Roy. Soc. Edinburgh Sect. A 127 (4) (1997) 691-701. | MR | Zbl
, ,[13] Multipeak solutions for a singular perturbed Neumann problem, Pacific J. Math. 189 (2) (1999) 241-262. | MR | Zbl
, ,[14] Existence of solitary waves for the nonlinear Klein-Gordon Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A 134 (5) (2004) 893-906. | Zbl
, ,[15] On bound states concentrating on spheres for the Maxwell-Schrödinger equation, SIAM J. Math. Anal. 37 (1) (2005) 321-342. | Zbl
, ,[16] Standing waves in the Maxwell-Schrödinger equation and an optimal configuration problem, Calc. Var. Partial Differential Equations 25 (1) (2006) 105-137.
, ,[17] Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations 4 (2) (1996) 121-137. | MR | Zbl
, ,[18] Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (2) (1998) 127-149. | Numdam | MR | Zbl
, ,[19] Semi-classical states for nonlinear Schrödinger equations, J. Funct. Anal. 149 (1) (1997) 245-265. | MR | Zbl
, ,[20] Semi-classical states of nonlinear Schrödinger equations: a variational reduction method, Math. Ann. 324 (1) (2002) 1-32. | MR | Zbl
, ,[21] Multi-bump ground states for the Gierer-Meinhardt system in , Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (1) (2003) 53-85. | Numdam | Zbl
, , ,[22] Partial Differential Equations, American Mathematical Society, Providence, RI, 1998. | MR | Zbl
,[23] Nonspreading wave pockets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69 (3) (1986) 397-408. | MR | Zbl
, ,[24] Symmetry of positive solutions of nonlinear elliptic equations in , Adv. Math. Suppl. Stud. 7A (1981) 369-402. | MR | Zbl
, , ,[25] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, Heidelberg, 2001. | MR | Zbl
, ,[26] Some results on a class of nonlinear Schrödinger equations, Math. Z. 235 (4) (2000) 687-705. | MR | Zbl
,[27] Multipeak solutions for a semilinear Neumann problem, Duke Math. J. 84 (3) (1996) 739-769. | MR | Zbl
,[28] On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math. 52 (3) (2000) 522-538. | MR | Zbl
, ,[29] Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (1) (2000) 47-82. | Numdam | MR | Zbl
, , ,[30] Discretizing manifolds via minimum energy points, Notices Amer. Math. Soc. 51 (10) (2004) 1186-1194. | MR | Zbl
, ,[31] Introduction to Potential Theory, John Wiley & Sons Inc., New York, 1969. | MR | Zbl
,[32] Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities, Calc. Var. Partial Differential Equations 21 (3) (2004) 287-318. | MR | Zbl
, ,[33] On interacting bumps of semiclassical states of nonlinear Schrödinger equations, Adv. Differential Equations 5 (7-9) (2000) 899-928.
, ,[34] Uniqueness of positive solutions of in , Arch. Rational Mech. Anal. 105 (3) (1989) 243-266. | MR | Zbl
,[35] On a singularly perturbed elliptic equation, Adv. Differential Equations 6 (2) (1997) 955-980. | MR | Zbl
,[36] On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math. 44 (7) (1991) 819-851. | MR | Zbl
, ,[37] Existence of semi-classical bound states of nonlinear Schrödinger equation with potential on the class , Comm. Partial Differential Equations 13 (12) (1988) 1499-1519. | MR
,[38] Multi-peak solutions for a class of nonlinear Schrödinger equations, NoDEA Nonlinear Differential Equations Appl. 9 (1) (2002) 69-91. | MR | Zbl
,[39] On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (2) (1992) 270-291. | MR | Zbl
,[40] Semiclassical states for coupled Schrödinger-Maxwell equations: concentration around a sphere, Math. Models Methods Appl. Sci. 15 (1) (2005) 141-164. | Zbl
,[41] On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys. 153 (2) (1993) 229-244. | MR | Zbl
,[42] On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations 129 (2) (1996) 315-333. | MR | Zbl
,[43] J. Wei, M. Winter, Symmetric and asymmetric multiple clusters in a reaction-diffusion system, NoDEA Nonlinear Differential Equations Appl., in press. | MR
[44] Clustered spots in the FitzHugh-Nagumo system, J. Differential Equations 213 (1) (2005) 121-145.
, ,Cited by Sources: