@article{AIHPC_2003__20_1_53_0,
author = {del Pino, Manuel and Kowalczyk, Micha{\l} and Wei, Juncheng},
title = {Multi-bump ground states of the {Gierer-Meinhardt} system in $\mathbb {R}^2$},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {53--85},
year = {2003},
publisher = {Elsevier},
volume = {20},
number = {1},
zbl = {01901027},
language = {en},
url = {https://www.numdam.org/item/AIHPC_2003__20_1_53_0/}
}
TY - JOUR
AU - del Pino, Manuel
AU - Kowalczyk, Michał
AU - Wei, Juncheng
TI - Multi-bump ground states of the Gierer-Meinhardt system in $\mathbb {R}^2$
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
SP - 53
EP - 85
VL - 20
IS - 1
PB - Elsevier
UR - https://www.numdam.org/item/AIHPC_2003__20_1_53_0/
LA - en
ID - AIHPC_2003__20_1_53_0
ER -
%0 Journal Article
%A del Pino, Manuel
%A Kowalczyk, Michał
%A Wei, Juncheng
%T Multi-bump ground states of the Gierer-Meinhardt system in $\mathbb {R}^2$
%J Annales de l'I.H.P. Analyse non linéaire
%D 2003
%P 53-85
%V 20
%N 1
%I Elsevier
%U https://www.numdam.org/item/AIHPC_2003__20_1_53_0/
%G en
%F AIHPC_2003__20_1_53_0
del Pino, Manuel; Kowalczyk, Michał; Wei, Juncheng. Multi-bump ground states of the Gierer-Meinhardt system in $\mathbb {R}^2$. Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) no. 1, pp. 53-85. https://www.numdam.org/item/AIHPC_2003__20_1_53_0/
[1] , , Dynamics of an interior spike in the Gierer-Meinhardt system, SIAM J. Math. Anal. 33 (1) (2001) 172-193. | Zbl | MR
[2] M. del Pino, P.L. Felmer, M. Kowalczyk, Boundary spikes in the Gierer-Meinhardt system, Asymptotic Anal., to appear.
[3] , , , The Gierer-Meinhardt system: the breaking of symmetry of homoclinics and multi-bump ground states, Comm. Contemp. Math. 3 (3) (2001) 419-439. | Zbl | MR
[4] , , , Large stable pulse solutions in reaction-diffusion equations, Indiana Univ. Math. J. 50 (5) (2001) 443-507. | Zbl | MR
[5] , , A theory of biological pattern formation, Kybernetik (Berlin) 12 (1972) 30-39.
[6] , , Multi-peak solutions for a semilinear Neumann problem involving the critical Sobolev exponent, Math. Z. 229 (1998) 443-474. | Zbl | MR
[7] , , , On a singularly perturbed Neumann problem with the critical exponent, Comm. Partial Differential Equations 26 (2001) 1929-1946. | Zbl | MR
[8] , Multi-peak solutions for a semilinear Neumann problem, Duke Math. J. 84 (1996) 739-769. | Zbl | MR
[9] C. Gui, C.-S. Lin, Estimates for boundary-bubbling solutions to an elliptic Neumann problem, to appear. | Zbl | MR
[10] , , Multiple interior peak solutions for some singular perturbation problems, J. Differential Equations 158 (1999) 1-27. | Zbl | MR
[11] , , On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math. 52 (2000) 522-538. | Zbl | MR
[12] , , , Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000) 47-82. | Zbl | MR | Numdam
[13] , , , The stability of spike solutions to the one-dimensional Gierer-Meinhardt model, Phys. D. 150 (1-2) (2001) 25-62. | Zbl | MR
[14] , Multiple spike layers in the shadow Gierer-Meinhardt system: existence of equilibria and approximate invariant manifold, Duke Math. J. 98 (1999) 59-111. | Zbl | MR
[15] , Activators and inhibitors in pattern formation, Stud. Appl. Math. 59 (1978) 1-23. | Zbl | MR
[16] , , , Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations 72 (1988) 1-27. | Zbl | MR
[17] , The Algorithmic Beauty of Sea Shells, Springer, Berlin, 1998. | Zbl | MR
[18] , Models of Biological Pattern Formation, Academic Press, London, 1982.
[19] , Diffusion, cross-diffusion, and their spike-layer steady states, Notices of Amer. Math. Soc. 45 (1998) 9-18. | Zbl | MR
[20] , , On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type, Trans. Amer. Math. Soc. 297 (1986) 351-368. | Zbl | MR
[21] , , On the shape of least energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math. 41 (1991) 819-851. | Zbl | MR
[22] , , Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993) 247-281. | Zbl | MR
[23] , , Point-condensation generated by a reaction-diffusion system in axially symmetric domains, Japan J. Indust. Appl. Math. 12 (1995) 327-365. | Zbl | MR
[24] , , , Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents, Duke Math. J. 67 (1992) 1-20. | Zbl | MR
[25] W.-M. Ni, I. Takagi, E. Yanagida, Stability analysis of point-condensation solutions to a reaction-diffusion system proposed by Gierer-Meinhardt, Tohoku Math. J., to appear.
[26] , , , Stability of least energy patterns of the shadow system for an activator-inhibitor model, Japan J. Indust. Appl. Math. 18 (2) (2001) 259-272. | Zbl | MR
[27] W.-M. Ni, I. Takagi, J. Wei, E. Yanagida, in preparartion.
[28] , Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal. 13 (1982) 555-593. | Zbl | MR
[29] , Point-condensation for a reaction-diffusion system, J. Differential Equations 61 (1986) 208-249. | Zbl | MR
[30] , The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B 237 (1952) 37-72.
[31] , On the boundary spike layer solutions of a singularly perturbed semilinear Neumann problem, J. Differential Equations 134 (1997) 104-133. | Zbl | MR
[32] , Uniqueness and eigenvalue estimates of boundary spike solutions, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 1457-1480. | Zbl | MR
[33] , On single interior spike solutions of Gierer-Meinhardt system: uniqueness and spectrum estimates, European J. Appl. Math. 10 (1999) 353-378. | Zbl | MR
[34] , Point-condensations generated by Gierer-Meinhardt system: a brief survey, in: , , , (Eds.), New Trends in Nonlinear Partial Differential Equations, 2000, pp. 46-59.
[35] , , On the two-dimensional Gierer-Meinhardt system with strong coupling, SIAM J. Math. Anal. 30 (1999) 1241-1263. | Zbl | MR
[36] , , On multiple spike solutions for the two-dimensional Gierer-Meinhardt system: the strong coupling case, J. Differential Equations 178 (2002) 478-518. | Zbl | MR
[37] , , Spikes for the two-dimensional Gierer-Meinhardt system: the weak coupling case, J. Nonlinear Science 6 (2001) 415-458. | Zbl | MR





