Number Theory
On Euler products and multi-variate Gaussians
Comptes Rendus. Mathématique, Volume 337 (2003) no. 4, pp. 223-226.

In this Note, we extend a recent result of A. Selberg concerning the asymptotic value distribution of Euler products to a multi-dimensional setting. Under certain conditions, an asymptotic development of Edgeworth type is found.

Nous généralisons à plusieurs variables un résultat récent de A. Selberg concernant la distribution asymptotique de valeurs des produits Eulériens. Sous certaines hypothèses un développement asymptotique de type Edgeworth est établi.

Received:
Accepted:
Published online:
DOI: 10.1016/S1631-073X(03)00344-3
Hejhal, Dennis A. 1, 2

1 Department of Mathematics, Uppsala University, Box 480, 75106 Uppsala, Sweden
2 School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
@article{CRMATH_2003__337_4_223_0,
     author = {Hejhal, Dennis A.},
     title = {On {Euler} products and multi-variate {Gaussians}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {223--226},
     publisher = {Elsevier},
     volume = {337},
     number = {4},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00344-3},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(03)00344-3/}
}
TY  - JOUR
AU  - Hejhal, Dennis A.
TI  - On Euler products and multi-variate Gaussians
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 223
EP  - 226
VL  - 337
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(03)00344-3/
DO  - 10.1016/S1631-073X(03)00344-3
LA  - en
ID  - CRMATH_2003__337_4_223_0
ER  - 
%0 Journal Article
%A Hejhal, Dennis A.
%T On Euler products and multi-variate Gaussians
%J Comptes Rendus. Mathématique
%D 2003
%P 223-226
%V 337
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(03)00344-3/
%R 10.1016/S1631-073X(03)00344-3
%G en
%F CRMATH_2003__337_4_223_0
Hejhal, Dennis A. On Euler products and multi-variate Gaussians. Comptes Rendus. Mathématique, Volume 337 (2003) no. 4, pp. 223-226. doi : 10.1016/S1631-073X(03)00344-3. http://www.numdam.org/articles/10.1016/S1631-073X(03)00344-3/

[1] Beurling, A. On functions with a spectral gap, The Collected Works of Arne Beurling, 2, Birkhäuser, 1989, pp. 370-372

[2] Billingsley, P. Probability and Measure, Wiley, 1986

[3] Bombieri, E.; Hejhal, D. On the distribution of zeros of linear combinations of Euler products, Duke Math. J., Volume 80 (1995), pp. 821-862

[4] Cramér, H. Random Variables and Probability Distributions, Cambridge University Press, 1962

[5] Fujii, A. On the zeros of Dirichlet L-functions I, Trans. Amer. Math. Soc., Volume 196 (1974), pp. 225-235

[6] Ghosh, A. On Riemann's zeta function – sign changes of S(T) (Halberstam, H., ed.), Recent Progress in Analytic Number Theory, 1, Academic Press, 1981, pp. 25-46

[7] Hejhal, D. On a result of Selberg concerning zeros of linear combinations of L-functions, Intern. Math. Res. Notices (2000), pp. 551-577

[8] Luo, W. Zeros of Hecke L-functions associated with cusp forms, Acta Arith., Volume 71 (1995), pp. 139-158

[9] Montgomery, H.; Vaughan, R. Hilbert's inequality, J. London Math. Soc., Volume 8 (1974) no. 2, pp. 73-82 (especially p. 75)

[10] Selberg, A. Old and new conjectures and results about a class of Dirichlet series, Collected Papers, 2, Springer-Verlag, 1991, pp. 47-63

[11] Selberg, A. Contributions to the theory of the Riemann zeta function, Archiv for Math. og Naturv. B, Volume 48 (1946), pp. 89-155 (especially §§ 2, 3)

[12] Selberg, A. Lectures on sieves, Collected Papers, 2, Springer-Verlag, 1991, pp. 65-247 (especially §§20, 21)

[13] K.-M. Tsang, The distribution of the values of the Riemann zeta function, Ph.D. dissertation, Princeton University, 1984

[14] Vaaler, J. Some extremal functions in Fourier analysis, Bull. Amer. Math. Soc. (N.S.), Volume 12 (1985), pp. 183-216

Cited by Sources: