

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 337 (2003) 223-226

Number Theory

On Euler products and multi-variate Gaussians

Dennis A. Hejhal^{a,b}

^a Department of Mathematics, Uppsala University, Box 480, 75106 Uppsala, Sweden ^b School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

Received 18 June 2003; accepted after revision 9 July 2003

Presented by Alain Connes

Abstract

In this Note, we extend a recent result of A. Selberg concerning the asymptotic value distribution of Euler products to a multi-dimensional setting. Under certain conditions, an asymptotic development of Edgeworth type is found. *To cite this article: D.A. Hejhal, C. R. Acad. Sci. Paris, Ser. I 337 (2003).*

© 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Sur les produits eulériens et les gaussiennes multidimensionnelles. Nous généralisons à plusieurs variables un résultat récent de A. Selberg concernant la distribution asymptotique de valeurs des produits Eulériens. Sous certaines hypothèses un développement asymptotique de type Edgeworth est établi. *Pour citer cet article : D.A. Hejhal, C. R. Acad. Sci. Paris, Ser. I* 337 (2003).

© 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Preliminaries

Let L_1, \ldots, L_J be a family of J Euler products of degree d satisfying the following hypotheses.

(I) Each $L_j(s)$ is expressible as $\prod_p \prod_{k=1}^d (1 - \alpha_{kpj} p^{-s})^{-1}$ for $\operatorname{Re}(s) > 1$, with "root numbers" α_{kpj} having modulus at most 1.

(II) Each $L_j(s)$ admits an analytic continuation to all of \mathbb{C} as a meromorphic function of finite order having a finite number of poles, all situated along Re(s) = 1.

(III) Each continued function $L_i(s)$ satisfies a functional equation of type

 $G(s)L_j(s) = \exp(i\alpha)\overline{G(1-\bar{s})} \overline{L_j(1-\bar{s})}$

with $G(s) = Q^s \prod_{\ell=1}^h \Gamma(\lambda_\ell s + \mu_\ell)$ and certain choices of $\alpha \in \mathbb{R}$, Q > 0, $h \ge 1$, $\lambda_\ell > 0$, and $\operatorname{Re}(\mu_\ell) \ge 0$ (these choices are allowed to depend on *j*).

E-mail address: hejhal@math.uu.se (D.A. Hejhal).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

(IV) The logarithms of the L_i are "independent" in the sense that one has

$$\sum_{p \leqslant X} p^{-1} c_j(p) \overline{c_k(p)} = \delta_{jk} \aleph_j \log \log X + c_{jk} + O\left[(\log X)^{-\nu} \right]$$

for $X \ge 2$ and certain $\aleph_j > 0$, $c_{jk} \in \mathbb{C}$, $\nu \in (0, 1]$, the coefficients $c_j(n)$ being defined by

$$\log L_j(s) = \sum_{n=2}^{\infty} c_j(n) \frac{\Lambda(n)}{\log n} n^{-s}.$$

In addition to (I)–(IV), we shall assume either:

 (V_a) that GRH holds for all L_j ; or,

(V_b) that, for some $\omega \in (\frac{1}{2}, 1]$ and $\beta > 0$, each L_j satisfies a Selberg-type density condition $N(\sigma, T, T + H) = O[H(H/\sqrt{T})^{\beta(1/2-\sigma)}\log T]$ for $\frac{1}{2} \le \sigma \le 1$ and $T^{\omega} \le H \le T$ (the same ω, β being utilized for all L_j).

Consult [3,7,10,11] for further information à propos (I)–(V). Hypothesis (V_b) is known to hold for Dirichlet *L*-series [10,11,5] as well as Euler products associated with Hecke-normalized GL(2) modular forms [8].

Elementary use of (IV) shows that one has

$$\psi_j(\sigma, t) \equiv \sum_{p \leqslant t} \left| c_j(p) \right|^2 p^{-2\sigma} = \aleph_j \log \left[\min\left(\log t, \left(\sigma - \frac{1}{2}\right)^{-1} \right) \right] + \mathcal{O}(1) \tag{1}$$

whenever $\frac{1}{2} \leq \sigma \leq \frac{3}{2}$ and $t \geq 2$.

For convenience, set $\psi_0(\sigma, t) = \sum_{p \leq t} p^{-2\sigma}$. Also select any numbers $0 < c_1$, Θ , $\delta < 1$, $1 < \kappa$, $c_2 < \infty$, and let $\chi_{ab}(u)$ denote the indicator function of [a, b]. If GRH holds, let ω be any number in (0, 1]; otherwise, take ω as in (V_b).

Selberg has shown that, under these conditions,

$$\int_{T}^{T+H} \left| \log L_j(\sigma + \mathrm{i}t) - \sum_{p \leqslant x} c_j(p) p^{-\sigma - \mathrm{i}t} \right|^{2k} \mathrm{d}t = \mathrm{O}\left[H(Ak)^{4k} \right]$$
(2)

holds with $x = T^{\Theta \omega/k}$ anytime $T^{\omega} \leq H \leq T$, $\frac{1}{2} \leq \sigma \leq 1$, $1 \leq k \leq (\log T)^{9/10}$. Cf. [10,6,13]. The constant A will depend solely on Θ , ω , L_1, \ldots, L_J .¹

In the case J = 1, by combining (2) with certain Fourier integral approximations to $\chi_{ab}(u)$ (cf. [1,12,14]) and standard moment properties of Dirichlet polynomials (as, for instance, in [9] or [7, Eqs. (4.4), (4.5)]), Selberg was able to show further that

$$\int_{T}^{T+H} \chi_{ab} \left[\operatorname{Re}(\operatorname{or}\operatorname{Im}) \log L_{1}(\sigma + \operatorname{i}t) \right] \mathrm{d}t = H \int_{a/\sqrt{\pi\psi_{1}}}^{b/\sqrt{\pi\psi_{1}}} \exp\left(-\pi v^{2}\right) \mathrm{d}v + \operatorname{O}(H) \frac{\log^{2}\psi_{1}}{\sqrt{\psi_{1}}}$$
(3)

holds with an implied constant independent of [a, b] whenever $\frac{1}{2} \leq \sigma \leq \frac{1}{2} + (\log T)^{-\delta}$ and $c_1 T^{\omega} \leq H \leq c_2 T$. See [10,13] and [7, §4]. It is understood here that $\psi_1 = \psi_1(\sigma, T)$ and that T is kept bigger than some suitable $T_0(\omega, c_1, c_2, \delta, L_1)$; of course, by (1), $\psi_1 \approx \log \log T$.

Relation (3) can be viewed as a partial refinement of the pointwise limit assertion

$$\lim_{T \to \infty} \frac{1}{H} m \left\{ t \in [T, T+H]: \ (\pi \psi_1)^{-1/2} \log L_1(\sigma + it) \in [a, b] \times [c, d] \right\} = \iint_{a \ c}^{b \ d} e^{-\pi (u^2 + v^2)} \, \mathrm{d}v \, \mathrm{d}u \tag{4}$$

224

¹ Likewise for the *implied* constant associated with the "big O".

which follows from the (relatively easily proved) moment estimate

$$\int_{T}^{T+H} \left(\log L_1(\sigma + it) \right)^k \overline{\left(\log L_1(\sigma + it) \right)^{\ell}} dt = \delta_{k\ell} k! H \psi_1^k + O_{k\ell}(H) \psi_1^{(k+\ell-1)/2}$$
(5)

by means of some basic probability theory (cf. [2, Problem 30.6]).

It would naturally be of interest to extend relation (3) to a full-fledged multi-variate setting. The counterpart of (4) for arbitrary J has been known for some time and is due to Selberg (unpublished); see [3, §5] for an exposition of this when $\sigma = \frac{1}{2}$. The case of general $\sigma \in [\frac{1}{2}, \frac{1}{2} + (\log T)^{-\delta}]$ is similar. In light of the fact (see [7]) that (2) can be improved to read

$$\int_{T}^{T+H} \left| \log L_j(\sigma + \mathrm{i}t) - \sum_{n \leqslant x} c_j(n) \frac{\Lambda(n)}{\log n} n^{-\sigma - \mathrm{i}t} \right|^{2k} \mathrm{d}t = \mathrm{O}\left[H(Ak)^{4k} x^{k(1/2-\sigma)} \right]$$
(6)

at least for $\frac{1}{2} \leq \sigma \leq \frac{1}{2} + (\log T)^{-\delta}$ and sufficiently small Θ , there arises a suspicion that – in revamping (3) – keeping σ slightly bigger than $\frac{1}{2}$ may make it feasible for matters to ultimately take the form of an *asymptotic development* (in powers of $\sqrt{\psi_{\ell}}$) akin to an Edgeworth expansion. Concerning the latter topic, cf., e.g., [4, Chapter 7].

2. Statement of results

T . **T**

Set
$$\Phi(x) = \int_0^x \exp(-\pi u^2) du$$
 and write $\psi_j = \psi_{j-J}$, $L_j = L_{j-J}$ whenever $J + 1 \le j \le 2J$.

Theorem 2.1. Given the situation of Section 1. Keep $\sigma \in [\frac{1}{2}, \frac{1}{2} + (\log T)^{-\delta}]$, $H \in [c_1 T^{\omega}, c_2 T]$, and T bigger than some suitable $T_0(L_1, \ldots, L_J, \omega, c_1, c_2, \delta, \kappa)$. Let $N = [\![\psi_0(\sigma, T)^{\kappa}]\!]$, $y = T^{\omega/2JN}$, and $\mathcal{L}_j(t) = L_j(\sigma + it)$. Then, for any numbers $a_i < b_i$, one has

$$\int_{T}^{T+H} \prod_{j=1}^{2J} \chi_{a_j b_j} \left[\operatorname{Re}(\operatorname{Im}) \log \mathcal{L}_j(t) \right] \mathrm{d}t = H \prod_{j=1}^{2J} \left[\varPhi\left(\frac{b_j}{\sqrt{\pi \psi_j}}\right) - \varPhi\left(\frac{a_j}{\sqrt{\pi \psi_j}}\right) \right] + \mathcal{O}(H) \frac{\log^2 \psi_0}{\sqrt{\psi_0}},$$

wherein "Re" refers to $j \leq J$ and "Im" to j > J. When σ exceeds $\frac{1}{2} + (\log y)^{-1}$, the remainder term can be replaced by

$$O(H)y^{(1-2\sigma)/3} + O(H)\psi_0^{-\kappa/2} + H \sum_{2 \le |\mathbf{n}| \le 1 + [[\kappa]]} A(\mathbf{n}) \prod_{j=1}^{2J} \frac{1}{(\sqrt{\pi \psi_j})^{n_j}} \bigg[\Phi^{(n_j)} \bigg(\frac{b_j}{\sqrt{\pi \psi_j}} \bigg) - \Phi^{(n_j)} \bigg(\frac{a_j}{\sqrt{\pi \psi_j}} \bigg) \bigg],$$

where the coefficients $A(\mathbf{n})$ ($\mathbf{n} \in \mathbb{N}^{2J}$) are certain numbers depending solely on $\{L_1, \ldots, L_J\}$. The implied constants associated with the various "big O" terms are understood here to depend on at most $\{L_1, \ldots, L_J, \omega, c_1, c_2, \delta, \kappa\}$. (In particular: they are independent of a_i and b_i .)

3. About the proof

The proof is basically a multi-variable adaptation of the ideas in [7, §4]; cf. also [13]. Taking $y = T^{\omega/2JN}$ (as above) and

$$\Sigma_{yj}(\sigma,t) = \sum_{n \leqslant y} c_j(n) \frac{\Lambda(n)}{\log n} n^{-\sigma - \mathrm{i}t},$$

225

one first seeks to develop – for general $\sigma \in [\frac{1}{2}, \frac{1}{2} + (\log T)^{-\delta}]$ – a prototypical Edgeworth expansion (minus the $O(H)y^{(1-2\sigma)/3}$ term) for $(\Sigma_{y1}(\sigma, t), \ldots, \Sigma_{yJ}(\sigma, t))$. To accomplish this, one approximates the various functions $\chi_{a_jb_j}(u)$ by Beurling–Selberg type functions of bandwidth $\Omega = (\text{const.})\psi_0(\sigma, T)^{(\kappa-1)/2}$ as in [7] and then patiently pushes through the resultant bookkeeping utilizing two main tricks; viz.,

(A) use of [9] to express each \mathbb{C}^J multimoment $\int_T^{T+H} \Sigma_y(\sigma, t)^{\mathbf{k}} \overline{\Sigma_y(\sigma, t)}^{\mathbf{k}} dt$ as

$$H\int_{0}^{1}\dots\int_{0}^{1}\Sigma_{y}(\sigma,\theta)^{\mathbf{k}}\overline{\Sigma_{y}(\sigma,\theta)}^{\mathbf{h}}\prod \mathrm{d}\theta_{p} + (\mathrm{good\ error\ term}),$$

(7)

where $\Sigma_y = (\Sigma_{y1}, \ldots, \Sigma_{yJ})$ and

$$\Sigma_{yj}(\sigma,\theta) = \sum_{n \leqslant y} c_j(n) \frac{\Lambda(n)}{\log n} n^{-\sigma} \exp(2\pi i\theta(n)), \quad \theta(n) = \sum_{p^f \parallel n} f\theta_p;$$

(B) exploitation of complex-variable techniques to systematically express differences of numerous (J_0 Bessel function-like) θ_p -integrals as Cauchy-type multiple integrals in the other ("v-type" Fourier transform space) variables; cf. here [7, Eq. (4.7) and the first line of the subsequent paragraph].

The leading term of (7) effectively "morphs" each p^{-it} (with $p \leq y$) into an independent random variable $\exp(2\pi i\theta_p)$. The upshot of this is that $\int_T^{T+H} \prod \chi_{a_jb_j}[\text{Re }(\text{or Im})\Sigma_{yj}(\sigma, t)] dt$ ultimately takes the form of an Edgeworth expansion in powers of $\sqrt{\psi_{\ell}(\sigma, y)}$ having coefficients $A(\sigma; \mathbf{n})$ which are built up out of constants like c_{jk} (cf. Section 1) and certain *absolutely convergent* Dirichlet series on $\{\sigma > \frac{1}{3}\}$ whose entries ξ_n are polynomial expressions in $\{\text{Re } c_j(m), \text{Im } c_j(m): j \in [1, J], m \in [2, n]\}$. (Note the *n*.)

expressions in {Re $c_j(m)$, Im $c_j(m)$: $j \in [1, J]$, $m \in [2, n]$ }. (Note the *n*.) Since, however, $\sigma \in [\frac{1}{2}, \frac{1}{2} + (\log T)^{-\delta}]$, there is no harm in replacing each of the aforementioned Dirichlet series by its value at $\sigma = 1/2$. This gives $A(\mathbf{n})$. Passage to $\log L_j(\sigma + it)$ can then be carried out (utilizing (6)) in much the same way as in [7];² the final result is that of Section 2.³

Complete details of this proof will be published elsewhere.

References

- [1] A. Beurling, On functions with a spectral gap, in: The Collected Works of Arne Beurling, Vol. 2, Birkhäuser, 1989, pp. 370–372.
- [2] P. Billingsley, Probability and Measure, 2nd edition, Wiley, 1986.
- [3] E. Bombieri, D. Hejhal, On the distribution of zeros of linear combinations of Euler products, Duke Math. J. 80 (1995) 821-862.
- [4] H. Cramér, Random Variables and Probability Distributions, 2nd edition, Cambridge University Press, 1962.
- [5] A. Fujii, On the zeros of Dirichlet L-functions I, Trans. Amer. Math. Soc. 196 (1974) 225–235.
- [6] A. Ghosh, On Riemann's zeta function sign changes of S(T), in: H. Halberstam (Ed.), in: Recent Progress in Analytic Number Theory, Vol. 1, Academic Press, 1981, pp. 25–46.
- [7] D. Hejhal, On a result of Selberg concerning zeros of linear combinations of L-functions, Intern. Math. Res. Notices (2000) 551–577.
- [8] W. Luo, Zeros of Hecke L-functions associated with cusp forms, Acta Arith. 71 (1995) 139–158.
- [9] H. Montgomery, R. Vaughan, Hilbert's inequality, J. London Math. Soc. 8 (2) (1974) 73-82, especially p. 75.
- [10] A. Selberg, Old and new conjectures and results about a class of Dirichlet series, in: Collected Papers, Vol. 2, Springer-Verlag, 1991, pp. 47–63.
- [11] A. Selberg, Contributions to the theory of the Riemann zeta function, Archiv for Math. og Naturv. B 48 (1946) 89–155, especially §§ 2, 3.
- [12] A. Selberg, Lectures on sieves, in: Collected Papers, Vol. 2, Springer-Verlag, 1991, pp. 65–247, especially §§20, 21.
- [13] K.-M. Tsang, The distribution of the values of the Riemann zeta function, Ph.D. dissertation, Princeton University, 1984.
- [14] J. Vaaler, Some extremal functions in Fourier analysis, Bull. Amer. Math. Soc. (N.S.) 12 (1985) 183-216.

² In this connection, note especially the $O(y^{1-2\sigma})$ assertion in [7, Lemma 3].

³ Taking $\nu = 0$ in Section 1 (IV) leads to a similar but weaker result (since the "constants like c_{jk} " which enter into the coefficients $A(\mathbf{n})$ will now contain "fuzz" of size O(1)).