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Abstract

In this Note, we extend a recent result of A. Selberg concerning the asymptotic value distribution of Euler products to
a multi-dimensional setting. Under certain conditions, an asymptotic development of Edgeworth type isTtoaite this
article: D.A. Hglhal, C. R. Acad. Sci. Paris, Ser. | 337 (2003).
O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Sur les produits eulériens et les gaussiennes multidimensionnelles. Nous généralisons a plusieurs variables un résultat
récent de A. Selberg concernant la distribution asymptotique de valeurs des produits Eulériens. Sous certaines hypotheses t
développement asymptotique de type Edgeworth est éRuulr. citer cet article: D.A. Hejhal, C. R. Acad. Sci. Paris, Ser. |
337 (2003).
O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Preliminaries

LetL1,..., L; be afamily of/ Euler products of degre¢satisfying the following hypotheses.

() Each L;(s) is expressible aﬂp ]_[Zzl(l - Olkpjp_s)_l for Re(s) > 1, with “root numbers’ay,; having
modulus at most 1.

(I) Each L ;(s) admits an analytic continuation to all @f as a meromorphic function of finite order having a
finite number of poles, all situated along®e= 1.

(1) Each continued functiotL ; (s) satisfies a functional equation of type

G(s)L;(s) =expie)G(1—35) L;(1—3)

with G(s) = Q° ]’[f’zlf(kls + w,) and certain choicesaf e R, Q >0, h > 1, A, > 0, and Réu,) > 0 (these
choices are allowed to depend gn
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(IV) The logarithms of thel ; are “independent” in the sense that one has

> plej(p)ex(p) =818 loglogX + cjx + O[(log X) "]
P<X

for X > 2 and certair®; > 0, cjx € C, v € (0, 1], the coefficients; (n) being defined by
( ) -

logL; (s)_zcj(n)

In addition to (I)—(IV), we shall assume either:

(V3a) that GRH holds for aIILj; or,

(Vyp) that, for somew € (2, 1] andﬂ > 0, eachL ; satisfies a Selberg-type density conditlétw, T, T + H) =
O[H (H/T)PM2=DlogT] for § <o <1andT® < H < T (the samev, § being utilized for allL ;).

Consult [3,7,10,11] for further information a propos (1)-(V). Hypothesig)( known to hold for Dirichlet
L-series [10,11,5] as well as Euler products associated with Hecke-normalizey @adular forms [8].

Elementary use of (IV) shows that one has

-1
Vilo,1) = Z|cj(p)|2p‘2" =N; Iog[min(logt, (a - }> )} +0(1) 1)
p<t 2

whenever} < o < 3 andr > 2.
For convenience, sefy(o, t) = Zpgtp_zg. Also select any numbers@cy, ©, § <1, 1 <k, ¢2 < o0, and
let x4»(u) denote the indicator function ¢, b]. If GRH holds, letw be any number irf0, 1]; otherwise, takev

asin ().
Selberg has shown that, under these conditions,
T+H
/ llogLj(o +it) — Z cj(ppo |2" dr = O[ H (Ak)™] (2)
T p<x

holds withx = 79“/k anytimeT® < H < T,
depend solely o®, w, L1,...,L;.}

In the case/ = 1, by combining (2) with certain Fourier integral approximationg4e(«) (cf. [1,12,14]) and
standard moment properties of Dirichlet polynomials (as, for instance, in [9] or [7, Egs. (4.4), (4.5)]), Selberg was
able to show further that

T+H b/ /Y1

<o <1, 1<k < (logT)%19, Cf. [10,6,13]. The constant will

Nl

2
/ xas[Re(OrIm)log Ly (o +in]dr = H / exp(—v2) dv + O(H) 'ij_‘fl 3)
T a/Nmwy

holds with an implied constant independentafb] whenever} < o < 4 + (log7)™® andc17® < H < coT .
See [10,13] and [7, 84]. It is understood here tiiat= yr1 (o, T) and thatT is kept bigger than some suitable
To(w, c1, ¢2, 8, L1); of course, by (1)1 ~loglogT.

Relation (3) can be viewed as a partial refinement of the pointwise limit assertion

fim %m{te[T,T—i—H]: (1) "Y?logLi(o +ir) € [a, b] x [c,d]}:// e * ) 4y du (4)

1 Likewise for theimplied constant associated with the “big O”.
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which follows from the (relatively easily proved) moment estimate
T+H
/ (logL1(o +i1))* (logL1(o +i1))" dr = 8k Hyrk + Oge (H)y i+ 172 (5)
T

by means of some basic probability theory (cf. [2, Problem 30.6]).
It would naturally be of interest textendrelation (3) to a full-fledged multi-variate setting. The counterpart of
(4) for arbitraryJ has been known for some time and is due to Selberg (unpublished); see [3, 85] for an exposition
of this wheno = 1. The case of general € [3, 2 + (log7)~?] is similar.
In light of the fact (see [7]) that (2) can be improved to read
T+H

/

T

at least for§ <o < ? + (log T)—‘S and sufficiently small®, there arises a suspicion that — in revamping (3) —

keepingo slightly bigger than% may make it feasible for matters to ultimately take the form odaymptotic de-
velopmen(in powers of,/v,) akin to an Edgeworth expansion. Concerning the latter topic, cf., e.g., [4, Chapter 7].

<n> o]

logL (o +ir) — Z cjmi dr = O[ H (Ak)¥x*(1/2=)] (6)

2. Statement of results
Set® (x) = [y exp(—mu?) du and writeys; = y;_;, L;j = Lj_; whenever/ + 1< j < 2J.
Theorem 2.1. Given the situation of Sectidh Keepo € [3, 5 + (logT) ™1, H € [c1T®, c2T1, andT bigger than

some suitabldo(L1, ..., Ly, w,c1,¢2,8, k). LetN = [yo(o, T)<], y =T*/?/N, andL;(t) = L;(o +it). Then,
for any numbers; < b;, one has

T+H 5,
b aj log® lﬂo

Xajb; Re(lm)logc (t) dt H [ ( ) cb( >:|+O(H)
T/JI_[l Jl_ll VY VY VwO

wherein “Re’ refers to j < J and “Im” to j > J. Wheno exceed% + (logy)~1, the remainder term can be
replaced by

_ b; a;
OH)y 3293 L O(H K/2+H [ n-)< J )_(p(”j)<—]>i|’
(r v 2. e )1 T w7 N

2<InI<1+[«]

where the coefficientsti(n) (n € N%/) are certain numbers depending solely ¢hy,...,L,}. The im-
plied constants associated with the various “b{@’ terms are understood here to depend on at most
{L1,...,Lj,w,c1,c2,68,«}. (Inparticular: they are independent af, andb;.)

3. About the proof

The proof is basically a multi-variable adaptation of the ideas in [7, §4]; cf. also [13]. Takiag“/2/N (as
above) and

(o)=Y cj(n)

n<y

A o-is
logn

’
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one first seeks to develop — for genesa& [%, % + (logT)~?%] — a prototypical Edgeworth expansion (minus the
O(H)y1=20)/3 term) for (Zy1(0, 1), ..., Xy, (o, 1)). To accomplish this, one approximates the various functions
Xa;b,; () by Beurling—Selberg type functions of bandwidzh= (const)yo(o, 7)*“~1/2 as in [7] and then patiently
pushes through the resultant bookkeeping utilizing two main tricks; viz.,

(A) use of [9] to express eadhy’ muItimomenthT+H Xy (o, t)ka (o,)"dr as

11
H/.../Ey(a,é))kzy(o,e)hn dd,, + (good error term 7)
o 0

whereX, = (Xy1,..., X)) and
A(n)n_g

Tyj(0.0)=> cjmn) logn

ny

exp(2riom). O(m) =Y fOp:

plln

(B) exploitation of complex-variable techniques to systematically express differences of numer&essel
function-like) 6,,-integrals as Cauchy-type multiple integrals in the othert{pe” Fourier transform space)
variables; cf. here [7, Eq. (4.7) and the first line of the subsequent paragraph].

The leading term of (7) effectively “morphs” eagh™" (with p < y) into an independent random variable
exp(2rif,). The upshot of this is thafT”H ]_[Xajbj[Re (orimyX,; (o, t)]dr ultimately takes the form of an
Edgeworth expansion in powers ¢fi; (o, y) having coefficientsi (o; n) which are built up out of constants like
cjk (cf. Section 1) and certaiabsolutely convergemirichlet series oo > %} whose entrieg, are polynomial
expressions ifRec; (m), Imc;(m): j €[1, J1,m €[2, n]}. (Note then.)

Since, however € [%, % + (log T)~?], there is no harm in replacing each of the aforementioned Dirichlet series
by its value ar = 1/2. This givesA(n). Passage to lof; (o + it) can then be carried out (utilizing (6)) in much
the same way as in [#the final result is that of Section®.

Complete details of this proof will be published elsewhere.
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