Number Theory

On Euler products and multi-variate Gaussians

Dennis A. Hejhal ${ }^{\text {a,b }}$
a Department of Mathematics, Uppsala University, Box 480, 75106 Uppsala, Sweden
${ }^{\mathrm{b}}$ School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

Received 18 June 2003; accepted after revision 9 July 2003
Presented by Alain Connes

Abstract

In this Note, we extend a recent result of A. Selberg concerning the asymptotic value distribution of Euler products to a multi-dimensional setting. Under certain conditions, an asymptotic development of Edgeworth type is found. To cite this article: D.A. Hejhal, C. R. Acad. Sci. Paris, Ser. I 337 (2003). © 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Sur les produits eulériens et les gaussiennes multidimensionnelles. Nous généralisons à plusieurs variables un résultat récent de A. Selberg concernant la distribution asymptotique de valeurs des produits Eulériens. Sous certaines hypothèses un développement asymptotique de type Edgeworth est établi. Pour citer cet article: D.A. Hejhal, C. R. Acad. Sci. Paris, Ser. I 337 (2003).
© 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Preliminaries

Let L_{1}, \ldots, L_{J} be a family of J Euler products of degree d satisfying the following hypotheses.
(I) Each $L_{j}(s)$ is expressible as $\prod_{p} \prod_{k=1}^{d}\left(1-\alpha_{k p j} p^{-s}\right)^{-1}$ for $\operatorname{Re}(s)>1$, with "root numbers" $\alpha_{k p j}$ having modulus at most 1 .
(II) Each $L_{j}(s)$ admits an analytic continuation to all of \mathbb{C} as a meromorphic function of finite order having a finite number of poles, all situated along $\operatorname{Re}(s)=1$.
(III) Each continued function $L_{j}(s)$ satisfies a functional equation of type

$$
G(s) L_{j}(s)=\exp (\mathrm{i} \alpha) \overline{G(1-\bar{s})} \overline{L_{j}(1-\bar{s})}
$$

with $G(s)=Q^{s} \prod_{l=1}^{h} \Gamma\left(\lambda_{l} s+\mu_{l}\right)$ and certain choices of $\alpha \in \mathbb{R}, Q>0, h \geqslant 1, \lambda_{l}>0$, and $\operatorname{Re}\left(\mu_{l}\right) \geqslant 0$ (these choices are allowed to depend on j).

[^0](IV) The logarithms of the L_{j} are "independent" in the sense that one has
$$
\sum_{p \leqslant X} p^{-1} c_{j}(p) \overline{c_{k}(p)}=\delta_{j k} \aleph_{j} \log \log X+c_{j k}+\mathrm{O}\left[(\log X)^{-\nu}\right]
$$
for $X \geqslant 2$ and certain $\aleph_{j}>0, c_{j k} \in \mathbb{C}, \nu \in(0,1]$, the coefficients $c_{j}(n)$ being defined by
$$
\log L_{j}(s)=\sum_{n=2}^{\infty} c_{j}(n) \frac{\Lambda(n)}{\log n} n^{-s}
$$

In addition to (I)-(IV), we shall assume either:
$\left(\mathrm{V}_{\mathrm{a}}\right)$ that GRH holds for all L_{j}; or,
$\left(\mathrm{V}_{\mathrm{b}}\right)$ that, for some $\omega \in\left(\frac{1}{2}, 1\right]$ and $\beta>0$, each L_{j} satisfies a Selberg-type density condition $N(\sigma, T, T+H)=$ $\mathrm{O}\left[H(H / \sqrt{T})^{\beta(1 / 2-\sigma)} \log T\right]$ for $\frac{1}{2} \leqslant \sigma \leqslant 1$ and $T^{\omega} \leqslant H \leqslant T$ (the same ω, β being utilized for all L_{j}).

Consult $[3,7,10,11]$ for further information à propos $(\mathrm{I})-(\mathrm{V})$. Hypothesis $\left(\mathrm{V}_{\mathrm{b}}\right)$ is known to hold for Dirichlet L-series [10,11,5] as well as Euler products associated with Hecke-normalized GL(2) modular forms [8].

Elementary use of (IV) shows that one has

$$
\begin{equation*}
\psi_{j}(\sigma, t) \equiv \sum_{p \leqslant t}\left|c_{j}(p)\right|^{2} p^{-2 \sigma}=\aleph_{j} \log \left[\min \left(\log t,\left(\sigma-\frac{1}{2}\right)^{-1}\right)\right]+\mathrm{O}(1) \tag{1}
\end{equation*}
$$

whenever $\frac{1}{2} \leqslant \sigma \leqslant \frac{3}{2}$ and $t \geqslant 2$.
For convenience, set $\psi_{0}(\sigma, t)=\sum_{p \leqslant t} p^{-2 \sigma}$. Also select any numbers $0<c_{1}, \Theta, \delta<1,1<\kappa, c_{2}<\infty$, and let $\chi_{a b}(u)$ denote the indicator function of $[a, b]$. If GRH holds, let ω be any number in $(0,1]$; otherwise, take ω as in $\left(V_{b}\right)$.

Selberg has shown that, under these conditions,

$$
\begin{equation*}
\int_{T}^{T+H}\left|\log L_{j}(\sigma+\mathrm{i} t)-\sum_{p \leqslant x} c_{j}(p) p^{-\sigma-\mathrm{i} t}\right|^{2 k} \mathrm{~d} t=\mathrm{O}\left[H(A k)^{4 k}\right] \tag{2}
\end{equation*}
$$

holds with $x=T^{\Theta \omega / k}$ anytime $T^{\omega} \leqslant H \leqslant T, \frac{1}{2} \leqslant \sigma \leqslant 1,1 \leqslant k \leqslant(\log T)^{9 / 10}$. Cf. [10,6,13]. The constant A will depend solely on $\Theta, \omega, L_{1}, \ldots, L_{J .}{ }^{1}$

In the case $J=1$, by combining (2) with certain Fourier integral approximations to $\chi_{a b}(u)$ (cf. [1,12,14]) and standard moment properties of Dirichlet polynomials (as, for instance, in [9] or [7, Eqs. (4.4), (4.5)]), Selberg was able to show further that

$$
\begin{equation*}
\int_{T}^{T+H} \chi_{a b}\left[\operatorname{Re}(\text { or Im }) \log L_{1}(\sigma+\mathrm{i} t)\right] \mathrm{d} t=H \int_{a / \sqrt{\pi \psi_{1}}}^{b / \sqrt{\pi \psi_{1}}} \exp \left(-\pi v^{2}\right) \mathrm{d} v+\mathrm{O}(H) \frac{\log ^{2} \psi_{1}}{\sqrt{\psi_{1}}} \tag{3}
\end{equation*}
$$

holds with an implied constant independent of $[a, b]$ whenever $\frac{1}{2} \leqslant \sigma \leqslant \frac{1}{2}+(\log T)^{-\delta}$ and $c_{1} T^{\omega} \leqslant H \leqslant c_{2} T$. See $[10,13]$ and $[7, \S 4]$. It is understood here that $\psi_{1}=\psi_{1}(\sigma, T)$ and that T is kept bigger than some suitable $T_{0}\left(\omega, c_{1}, c_{2}, \delta, L_{1}\right)$; of course, by (1), $\psi_{1} \approx \log \log T$.

Relation (3) can be viewed as a partial refinement of the pointwise limit assertion

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{H} m\left\{t \in[T, T+H]:\left(\pi \psi_{1}\right)^{-1 / 2} \log L_{1}(\sigma+\mathrm{i} t) \in[a, b] \times[c, d]\right\}=\int_{a}^{b} \int_{c}^{d} \mathrm{e}^{-\pi\left(u^{2}+v^{2}\right)} \mathrm{d} v \mathrm{~d} u \tag{4}
\end{equation*}
$$

[^1]which follows from the (relatively easily proved) moment estimate
\[

$$
\begin{equation*}
\int_{T}^{T+H}\left(\log L_{1}(\sigma+\mathrm{i} t)\right)^{k} \overline{\left(\log L_{1}(\sigma+\mathrm{i} t)\right)^{\ell}} \mathrm{d} t=\delta_{k \ell} k!H \psi_{1}^{k}+\mathrm{O}_{k \ell}(H) \psi_{1}^{(k+\ell-1) / 2} \tag{5}
\end{equation*}
$$

\]

by means of some basic probability theory (cf. [2, Problem 30.6]).
It would naturally be of interest to extend relation (3) to a full-fledged multi-variate setting. The counterpart of (4) for arbitrary J has been known for some time and is due to Selberg (unpublished); see [3, §5] for an exposition of this when $\sigma=\frac{1}{2}$. The case of general $\sigma \in\left[\frac{1}{2}, \frac{1}{2}+(\log T)^{-\delta}\right]$ is similar.

In light of the fact (see [7]) that (2) can be improved to read

$$
\begin{equation*}
\int_{T}^{T+H}\left|\log L_{j}(\sigma+\mathrm{i} t)-\sum_{n \leqslant x} c_{j}(n) \frac{\Lambda(n)}{\log n} n^{-\sigma-\mathrm{i} t}\right|^{2 k} \mathrm{~d} t=\mathrm{O}\left[H(A k)^{4 k} x^{k(1 / 2-\sigma)}\right] \tag{6}
\end{equation*}
$$

at least for $\frac{1}{2} \leqslant \sigma \leqslant \frac{1}{2}+(\log T)^{-\delta}$ and sufficiently small Θ, there arises a suspicion that - in revamping (3) keeping σ slightly bigger than $\frac{1}{2}$ may make it feasible for matters to ultimately take the form of an asymptotic development (in powers of $\sqrt{\psi_{\ell}}$) akin to an Edgeworth expansion. Concerning the latter topic, cf., e.g., [4, Chapter 7].

2. Statement of results

Set $\Phi(x)=\int_{0}^{x} \exp \left(-\pi u^{2}\right) \mathrm{d} u$ and write $\psi_{j}=\psi_{j-J}, L_{j}=L_{j-J}$ whenever $J+1 \leqslant j \leqslant 2 J$.

Theorem 2.1. Given the situation of Section 1. Keep $\sigma \in\left[\frac{1}{2}, \frac{1}{2}+(\log T)^{-\delta}\right], H \in\left[c_{1} T^{\omega}, c_{2} T\right]$, and T bigger than some suitable $T_{0}\left(L_{1}, \ldots, L_{J}, \omega, c_{1}, c_{2}, \delta, \kappa\right)$. Let $N=\llbracket \psi_{0}(\sigma, T)^{\kappa} \rrbracket, y=T^{\omega / 2 J N}$, and $\mathcal{L}_{j}(t)=L_{j}(\sigma+\mathrm{i} t)$. Then, for any numbers $a_{j}<b_{j}$, one has

$$
\int_{T}^{T+H} \prod_{j=1}^{2 J} \chi_{a_{j} b_{j}}\left[\operatorname{Re}(\operatorname{Im}) \log \mathcal{L}_{j}(t)\right] \mathrm{d} t=H \prod_{j=1}^{2 J}\left[\Phi\left(\frac{b_{j}}{\sqrt{\pi \psi_{j}}}\right)-\Phi\left(\frac{a_{j}}{\sqrt{\pi \psi_{j}}}\right)\right]+\mathrm{O}(H) \frac{\log ^{2} \psi_{0}}{\sqrt{\psi_{0}}}
$$

wherein "Re" refers to $j \leqslant J$ and " Im " to $j>J$. When σ exceeds $\frac{1}{2}+(\log y)^{-1}$, the remainder term can be replaced by

$$
\mathrm{O}(H) y^{(1-2 \sigma) / 3}+\mathrm{O}(H) \psi_{0}^{-\kappa / 2}+H \sum_{2 \leqslant|\mathbf{n}| \leqslant 1+\llbracket \kappa \rrbracket} A(\mathbf{n}) \prod_{j=1}^{2 J} \frac{1}{\left(\sqrt{\pi \psi_{j}}\right)^{n_{j}}}\left[\Phi^{\left(n_{j}\right)}\left(\frac{b_{j}}{\sqrt{\pi \psi_{j}}}\right)-\Phi^{\left(n_{j}\right)}\left(\frac{a_{j}}{\sqrt{\pi \psi_{j}}}\right)\right]
$$

where the coefficients $A(\mathbf{n})\left(\mathbf{n} \in \mathbb{N}^{2 J}\right)$ are certain numbers depending solely on $\left\{L_{1}, \ldots, L_{J}\right\}$. The implied constants associated with the various "big O " terms are understood here to depend on at most $\left\{L_{1}, \ldots, L_{J}, \omega, c_{1}, c_{2}, \delta, \kappa\right\}$. (In particular: they are independent of a_{j} and b_{j}.)

3. About the proof

The proof is basically a multi-variable adaptation of the ideas in [7, §4]; cf. also [13]. Taking $y=T^{\omega / 2 J N}$ (as above) and

$$
\Sigma_{y j}(\sigma, t)=\sum_{n \leqslant y} c_{j}(n) \frac{\Lambda(n)}{\log n} n^{-\sigma-\mathrm{i} t}
$$

one first seeks to develop - for general $\sigma \in\left[\frac{1}{2}, \frac{1}{2}+(\log T)^{-\delta}\right]$ - a prototypical Edgeworth expansion (minus the $\mathrm{O}(H) y^{(1-2 \sigma) / 3}$ term) for $\left(\Sigma_{y 1}(\sigma, t), \ldots, \Sigma_{y J}(\sigma, t)\right)$. To accomplish this, one approximates the various functions $\chi_{a_{j} b_{j}}(u)$ by Beurling-Selberg type functions of bandwidth $\Omega=$ (const.) $\psi_{0}(\sigma, T)^{(\kappa-1) / 2}$ as in [7] and then patiently pushes through the resultant bookkeeping utilizing two main tricks; viz.,
(A) use of [9] to express each \mathbb{C}^{J} multimoment $\int_{T}^{T+H} \Sigma_{y}(\sigma, t)^{\mathbf{k}}{\overline{\Sigma_{y}(\sigma, t)}}^{\mathbf{h}} \mathrm{d} t$ as

$$
\begin{equation*}
H \int_{0}^{1} \ldots \int_{0}^{1} \Sigma_{y}(\sigma, \theta)^{\mathbf{k}}{\overline{\Sigma_{y}(\sigma, \theta)}}^{\mathbf{h}} \prod \mathrm{d} \theta_{p}+(\text { good error term }) \tag{7}
\end{equation*}
$$

where $\Sigma_{y}=\left(\Sigma_{y 1}, \ldots, \Sigma_{y J}\right)$ and

$$
\Sigma_{y j}(\sigma, \theta)=\sum_{n \leqslant y} c_{j}(n) \frac{\Lambda(n)}{\log n} n^{-\sigma} \exp (2 \pi \mathrm{i} \theta(n)), \quad \theta(n)=\sum_{p^{f} \| n} f \theta_{p}
$$

(B) exploitation of complex-variable techniques to systematically express differences of numerous (J_{0} Bessel function-like) θ_{p}-integrals as Cauchy-type multiple integrals in the other (" v-type" Fourier transform space) variables; cf. here [7, Eq. (4.7) and the first line of the subsequent paragraph].

The leading term of (7) effectively "morphs" each $p^{-\mathrm{i} t}$ (with $p \leqslant y$) into an independent random variable $\exp \left(2 \pi \mathrm{i} \theta_{p}\right)$. The upshot of this is that $\int_{T}^{T+H} \prod \chi_{a_{j} b_{j}}\left[\operatorname{Re}(\right.$ or $\left.\operatorname{Im}) \Sigma_{y j}(\sigma, t)\right] \mathrm{d} t$ ultimately takes the form of an Edgeworth expansion in powers of $\sqrt{\psi_{\ell}(\sigma, y)}$ having coefficients $A(\sigma ; \mathbf{n})$ which are built up out of constants like $c_{j k}$ (cf. Section 1) and certain absolutely convergent Dirichlet series on $\left\{\sigma>\frac{1}{3}\right\}$ whose entries ξ_{n} are polynomial expressions in $\left\{\operatorname{Re} c_{j}(m), \operatorname{Im} c_{j}(m): j \in[1, J], m \in[2, n]\right\}$. (Note the n.)

Since, however, $\sigma \in\left[\frac{1}{2}, \frac{1}{2}+(\log T)^{-\delta}\right]$, there is no harm in replacing each of the aforementioned Dirichlet series by its value at $\sigma=1 / 2$. This gives $A(\mathbf{n})$. Passage to $\log L_{j}(\sigma+\mathrm{i} t)$ can then be carried out (utilizing (6)) in much the same way as in [7]; ${ }^{2}$ the final result is that of Section $2 .^{3}$

Complete details of this proof will be published elsewhere.

References

[1] A. Beurling, On functions with a spectral gap, in: The Collected Works of Arne Beurling, Vol. 2, Birkhäuser, 1989, pp. 370-372.
[2] P. Billingsley, Probability and Measure, 2nd edition, Wiley, 1986.
[3] E. Bombieri, D. Hejhal, On the distribution of zeros of linear combinations of Euler products, Duke Math. J. 80 (1995) 821-862.
[4] H. Cramér, Random Variables and Probability Distributions, 2nd edition, Cambridge University Press, 1962.
[5] A. Fujii, On the zeros of Dirichlet L-functions I, Trans. Amer. Math. Soc. 196 (1974) 225-235.
[6] A. Ghosh, On Riemann's zeta function - sign changes of $S(T)$, in: H. Halberstam (Ed.), in: Recent Progress in Analytic Number Theory, Vol. 1, Academic Press, 1981, pp. 25-46.
[7] D. Hejhal, On a result of Selberg concerning zeros of linear combinations of L-functions, Intern. Math. Res. Notices (2000) 551-577.
[8] W. Luo, Zeros of Hecke L-functions associated with cusp forms, Acta Arith. 71 (1995) 139-158.
[9] H. Montgomery, R. Vaughan, Hilbert's inequality, J. London Math. Soc. 8 (2) (1974) 73-82, especially p. 75.
[10] A. Selberg, Old and new conjectures and results about a class of Dirichlet series, in: Collected Papers, Vol. 2, Springer-Verlag, 1991, pp. 47-63.
[11] A. Selberg, Contributions to the theory of the Riemann zeta function, Archiv for Math. og Naturv. B 48 (1946) 89-155, especially §§ 2 , 3.
[12] A. Selberg, Lectures on sieves, in: Collected Papers, Vol. 2, Springer-Verlag, 1991, pp. 65-247, especially §§20, 21.
[13] K.-M. Tsang, The distribution of the values of the Riemann zeta function, Ph.D. dissertation, Princeton University, 1984.
[14] J. Vaaler, Some extremal functions in Fourier analysis, Bull. Amer. Math. Soc. (N.S.) 12 (1985) 183-216.

[^2]
[^0]: E-mail address: hejhal@math.uu.se (D.A. Hejhal).

 1631-073X/\$ - see front matter © 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
 doi:10.1016/S1631-073X(03)00344-3

[^1]: ${ }^{1}$ Likewise for the implied constant associated with the "big O".

[^2]: ${ }^{2}$ In this connection, note especially the $\mathrm{O}\left(y^{1-2 \sigma}\right)$ assertion in [7, Lemma 3].
 ${ }^{3}$ Taking $v=0$ in Section 1 (IV) leads to a similar but weaker result (since the "constants like $c_{j k}$ " which enter into the coefficients $A(\mathbf{n})$ will now contain "fuzz" of size $\mathrm{O}(1)$).

