Finite extensions and unipotent shadows of affine crystallographic groups
[Extensions finies et ombres unipotentes des groupes affines cristallographiques]
Comptes Rendus. Mathématique, Tome 335 (2002) no. 10, pp. 785-788.

Soit Γ un groupe virtuellement polycyclique tel que le sous-groupe de Fitting soit sans torsion et contienne son centralisateur. Nous montrons qu'une extension effective de Γ par un groupe fini μ est isomorphe à un groupe affine cristallographique si et seulement si μ laisse fixe un point dans l'espace des déformations des actions affines cristallographiques de Γ. Nous associons à Γ un groupe nilpotent sans torsion et de type fini Θ que nous appelons l'ombre unipotente de Γ. Ensuite nous relions l'espace des déformations de Γ à l'espace des déformations de Θ. Comme application nous montrons que Γ est isomorphe à un groupe affine cristallographique si, par exemple, Θ est de classe de nilpotence ⩽3, ou si le rang polycyclique de Γ est ⩽5, ainsi que dans certains autres cas.

Let Γ be a virtually polycyclic group so that the Fitting subgroup is torsion-free and contains its centralizer. We prove that an effective extension of Γ by a finite group μ is isomorphic to an affine crystallographic group if and only if there exists a fixed point for the action of μ on the deformation space of affine crystallographic actions of Γ. We associate to Γ a finitely generated torsion-free nilpotent group Θ which is called the unipotent shadow of Γ, and we relate the deformation space of Γ to the deformation space of Θ. As an application, we show that Γ is isomorphic to an affine crystallographic group if, e.g., Θ has nilpotency class ⩽3, or if the polycylic rank of Γ is ⩽5, and also in some other cases.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02562-1
Baues, Oliver 1

1 Departement Mathematik, ETHZ, CH-8092 Zürich, Switzerland
@article{CRMATH_2002__335_10_785_0,
     author = {Baues, Oliver},
     title = {Finite extensions and unipotent shadows of affine crystallographic groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {785--788},
     publisher = {Elsevier},
     volume = {335},
     number = {10},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02562-1},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02562-1/}
}
TY  - JOUR
AU  - Baues, Oliver
TI  - Finite extensions and unipotent shadows of affine crystallographic groups
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 785
EP  - 788
VL  - 335
IS  - 10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(02)02562-1/
DO  - 10.1016/S1631-073X(02)02562-1
LA  - en
ID  - CRMATH_2002__335_10_785_0
ER  - 
%0 Journal Article
%A Baues, Oliver
%T Finite extensions and unipotent shadows of affine crystallographic groups
%J Comptes Rendus. Mathématique
%D 2002
%P 785-788
%V 335
%N 10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(02)02562-1/
%R 10.1016/S1631-073X(02)02562-1
%G en
%F CRMATH_2002__335_10_785_0
Baues, Oliver. Finite extensions and unipotent shadows of affine crystallographic groups. Comptes Rendus. Mathématique, Tome 335 (2002) no. 10, pp. 785-788. doi : 10.1016/S1631-073X(02)02562-1. http://www.numdam.org/articles/10.1016/S1631-073X(02)02562-1/

[1] Auslander, L. Simply transitive groups of affine motions, Amer. J. Math, Volume 99 (1977) no. 4, pp. 809-826

[2] Baues, O. Gluing affine two-manifolds with polygons, Geom. Dedicata, Volume 75 (1999) no. 1, pp. 33-56

[3] Benoist, Y. Une nilvariété non affine, J. Differential Geom, Volume 41 (1995), pp. 21-52

[4] Bieberbach, L. Über die Bewegungsgruppen der Euklidischen Räume I, Math. Ann, Volume 72 (1912), pp. 400-412

[5] Burckhardt, J. Zur Theorie der Bewegungsgruppen, Comment. Math. Helv, Volume 6 (1934), pp. 159-184

[6] Fried, D.; Goldman, W.M. Three-dimensional affine crystallographic groups, Adv. in Math, Volume 47 (1983) no. 1, pp. 1-49

[7] Grunewald, F.; Segal, D. On affine crystallographic groups, J. Differential Geom, Volume 40 (1994) no. 3, pp. 563-594

[8] Lee, K.B. Aspherical manifolds with virtually 3-step nilpotent fundamental group, Amer. J. Math, Volume 105 (1983) no. 6, pp. 1435-1453

[9] Mostow, G.D. Representative functions on discrete groups and solvable arithmetic subgroups, Amer. J. Math, Volume 92 (1970), pp. 1-32

[10] Raghunathan, M.S. Discrete Subgroups of Lie Groups, Ergeb. Math. Grenzgeb, 68, Springer-Verlag, 1972

[11] Scheuneman, J. Examples of compact locally affine spaces, Bull. Amer. Math. Soc, Volume 77 (1971), pp. 589-592

[12] Scheuneman, J. Affine structures on three-step nilpotent Lie algebras, Proc. Amer. Math. Soc, Volume 46 (1974), pp. 451-454

[13] Zassenhaus, H. Über einen Algorithmus zur Bestimmung der Raumgruppen, Comment. Math. Helv, Volume 21 (1948), pp. 117-141

Cité par Sources :