Modeling and numerical treatment of boundary data in an eddy currents problem
Comptes Rendus. Mathématique, Volume 335 (2002) no. 7, pp. 633-638.

The aim of this paper is to analyze a finite element method to solve the eddy currents model in a bounded conductor domain. In particular we study a weak formulation in terms of the magnetic field. In order to impose suitable boundary conditions from a physical point of view, we introduce a Lagrange multiplier defined on the boundary and study the resulting mixed formulation by using classical techniques.

L'objectif de cette Note est d'analyser une méthode d'éléments finis pour la résolution numérique du modèle des courants de Foucault. Nous étudions une formulation faible en termes de champ magnétique. Pour imposer des conditions aux limites réalistes d'un point de vue physique, nous introduisons un multiplicateur de Lagrange défini sur la frontière du domaine et nous étudions la formulation mixte correspondante, en utilisant des techniques classiques.

Received:
Accepted:
Published online:
DOI: 10.1016/S1631-073X(02)02536-0
Bermúdez, Alfredo 1; Rodrı́guez, Rodolfo 2; Salgado, Pilar 1

1 Departamento de Matemática Aplicada, Universidade de Santiago de Compostela, 15706, Santiago de Compostela, Spain
2 GI
@article{CRMATH_2002__335_7_633_0,
     author = {Berm\'udez, Alfredo and Rodr{\i}́guez, Rodolfo and Salgado, Pilar},
     title = {Modeling and numerical treatment of boundary data in an eddy currents problem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {633--638},
     publisher = {Elsevier},
     volume = {335},
     number = {7},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02536-0},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(02)02536-0/}
}
TY  - JOUR
AU  - Bermúdez, Alfredo
AU  - Rodrı́guez, Rodolfo
AU  - Salgado, Pilar
TI  - Modeling and numerical treatment of boundary data in an eddy currents problem
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 633
EP  - 638
VL  - 335
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(02)02536-0/
DO  - 10.1016/S1631-073X(02)02536-0
LA  - en
ID  - CRMATH_2002__335_7_633_0
ER  - 
%0 Journal Article
%A Bermúdez, Alfredo
%A Rodrı́guez, Rodolfo
%A Salgado, Pilar
%T Modeling and numerical treatment of boundary data in an eddy currents problem
%J Comptes Rendus. Mathématique
%D 2002
%P 633-638
%V 335
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(02)02536-0/
%R 10.1016/S1631-073X(02)02536-0
%G en
%F CRMATH_2002__335_7_633_0
Bermúdez, Alfredo; Rodrı́guez, Rodolfo; Salgado, Pilar. Modeling and numerical treatment of boundary data in an eddy currents problem. Comptes Rendus. Mathématique, Volume 335 (2002) no. 7, pp. 633-638. doi : 10.1016/S1631-073X(02)02536-0. http://www.numdam.org/articles/10.1016/S1631-073X(02)02536-0/

[1] Alonso, A.; Valli, A. A domain decomposition approach for heterogeneous time-harmonic Maxwell equations, Comput. Methods Appl. Mech. Engrg., Volume 143 (1997), pp. 97-112

[2] Amrouche, C.; Bernardi, C.; Dauge, M.; Girault, V. Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci., Volume 21 (1998), pp. 823-864

[3] Bermúdez, A.; Bullón, J.; Pena, F. A finite element method for the thermoelectrical modelling of electrodes, Comm. Numer. Methods Engrg., Volume 14 (1998), pp. 581-593

[4] A. Bermúdez, R. Rodrı́guez, P. Salgado, A finite element method with Lagrange multipliers for low-frequency harmonic Maxwell equations, Preprint DIM 2001-14, Universidad de Concepción, Chile, 2001, SIAM J. Numer. Anal. (2002), to appear

[5] Bossavit, A. Computational Electromagnetism. Variational Formulations, Complementarity, Edge Elements, Academic Press, San Diego, CA, 1998

[6] Girault, V.; Raviart, P.A. Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms, Springer-Verlag, Berlin, 1986

[7] R. Innvær, L. Olsen, Practical use of mathematical models for Soderberg electrodes, Elkem Carbon Technical Paper presented at the A.I.M.E. Conference, 1980

[8] Nédélec, J.C. Mixed finite elements in 3 , Numer. Math., Volume 35 (1980), pp. 315-341

Cited by Sources: