[Extensions naturelles et mesures de Gauss pour des algorithmes de fraction continues homographiques par morceaux]
We give a heuristic method to solve explicitly for an absolutely continuous invariant measure for a piecewise differentiable, expanding map of a compact subset of Euclidean space . The method consists of constructing a skew product family of maps on , which has an attractor. Lebesgue measure is invariant for the skew product family restricted to this attractor. Under reasonable measure-theoretic conditions, integration over the fibers gives the desired measure on . Furthermore, the attractor system is then the natural extension of the original map with this measure. We illustrate this method by relating it to various results in the literature.
Nous donnons une méthode heuristique pour trouver explicitement une mesure invariante absolument continue pour une application différentiable par morceaux et expansive d’un sous-ensemble compact de l’espace euclidien . La méthode consiste à construire une famille d’applications qui est un produit croisé sur , et à montrer que cette famille possède un attracteur. La mesure de Lebesgue est par construction invariante pour la restriction à l’attracteur de cette famille d’applications. Sous des hypothèses raisonnables sur la mesure, l’intégration le long des fibres donne la mesure invariante cherchée sur . De plus, le système construit sur l’attracteur est l’extension naturelle de l’application originale, munie de cette mesure invariante. Nous illustrons cette méthode par plusieurs exemples tirés de la littérature.
Keywords: natural extensions, continued fractions, invariant measures, iterated function system
Mots-clés : extension naturelle, fractions continues, mesures invariantes, systèmes de fonctions itérées
Arnoux, Pierre 1 ; Schmidt, Thomas A. 2
@article{BSMF_2019__147_3_515_0,
author = {Arnoux, Pierre and Schmidt, Thomas A.},
title = {Natural extensions and {Gauss} measures for piecewise homographic continued fractions},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {515--544},
year = {2019},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {147},
number = {3},
doi = {10.24033/bsmf.2791},
mrnumber = {4030549},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2791/}
}
TY - JOUR AU - Arnoux, Pierre AU - Schmidt, Thomas A. TI - Natural extensions and Gauss measures for piecewise homographic continued fractions JO - Bulletin de la Société Mathématique de France PY - 2019 SP - 515 EP - 544 VL - 147 IS - 3 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2791/ DO - 10.24033/bsmf.2791 LA - en ID - BSMF_2019__147_3_515_0 ER -
%0 Journal Article %A Arnoux, Pierre %A Schmidt, Thomas A. %T Natural extensions and Gauss measures for piecewise homographic continued fractions %J Bulletin de la Société Mathématique de France %D 2019 %P 515-544 %V 147 %N 3 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2791/ %R 10.24033/bsmf.2791 %G en %F BSMF_2019__147_3_515_0
Arnoux, Pierre; Schmidt, Thomas A. Natural extensions and Gauss measures for piecewise homographic continued fractions. Bulletin de la Société Mathématique de France, Tome 147 (2019) no. 3, pp. 515-544. doi: 10.24033/bsmf.2791
Geodesic flows, interval maps, and symbolic dynamics, Bull. Amer. Math. Soc. (N.S.), Volume 25 (1991), pp. 229-334 | MR | Zbl | DOI
Fractions continues sur les surfaces de Veech, J. Anal. Math., Volume 81 (2000), pp. 35-64 | MR | Zbl | DOI
On some symmetric multidimensional continued fraction algorithms, Ergodic Theory and Dynamical Systems (2017), pp. 1-26 | Zbl | MR | DOI
Random product of substitutions with the same incidence matrix, Theoret. Comput. Sci., Volume 543 (2014), pp. 68-78 | MR | Zbl | DOI
Mesures de Gauss pour des algorithmes de fractions continues multidimensionnelles, Ann. Sci. École Norm. Sup. (4), Volume 26 (1993), pp. 645-664 | MR | Zbl | Numdam | DOI
Le codage du flot géodésique sur la surface modulaire. (French) [Coding of the geodesic flow on the modular surface], Enseign. Math. (2), Volume 40 (1994), pp. 29-48 | MR | Zbl
Ein mechanisches System mit quasi-ergodischen Bahnen, Abh. Math. Sem. Hamburg, Volume 1982 (1924), pp. 170-175 | MR | JFM | DOI
Cross sections for geodesic flows and -continued fractions, Nonlinearity, Volume 26 (2013), pp. 711-726 | MR | Zbl | DOI
Commensurable continued fractions, Discrete and Continuous Dynamical Systems – Series A (DCDS-A), Volume 34 (2014), pp. 4389-4418 | MR | Zbl | DOI
Fractals everywhere, Second edition. Revised with the assistance of and with a foreword by Hawley Rising, III, Academic Press Professional, Boston, MA, 1993, 534 pages | MR | Zbl
Some metrical observations on the approximation by continued fractions, Nederl. Akad. Wetensch. Indag. Math., Volume 45 (1983), pp. 281-299 | MR | Zbl | DOI
Natural extensions for the Rosen fractions, Trans. Amer. Math. Soc., Volume 352 (2000), pp. 1277-1298 | MR | Zbl | DOI
Factor complexity of -adic words generated by the Arnoux-Rauzy-Poincaré algorithm, Adv. Appl. Math., Volume 63 (2015), pp. 90-130 | MR | Zbl | DOI
A Gauss-Kuzmin-Lévy theorem for a certain continued fraction, International Journal of Mathematics and Mathematical Sciences, Volume 2004 (2004), pp. 1067-1076 | MR | Zbl | DOI
Synchronization is full measure for all -deformations of an infinite class of continued fraction transformations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (to appear; 50 pp) | MR
A canonical thickening of and the entropy of -continued fraction transformations, Ergodic Theory Dynam. Systems, Volume 32 (2012), pp. 1249-1269 | MR | Zbl | DOI
Metrical theory for -Rosen fractions, J. Eur. Math. Soc. (JEMS), Volume 11 (2009), pp. 1259-1283 | MR | Zbl | DOI
On the construction of the natural extension of the Hurwitz complex continued fraction map, Monatsh. Math., Volume 188 (2019), pp. 37-86 | MR | DOI
Letter to Laplace, Gauss Werke, 1917, pp. 371-374
Backward continued fractions and their invariant measures, Canad. Math. Bull., Volume 39 (1996), pp. 186-198 | MR | Zbl | DOI
Symbolic dynamics for the geodesic flow on locally symmetric orbifolds of rank one, Infinite dimensional harmonic analysis IV, NJ, World Sci. Publ., Hackensack, 2009 | MR | Zbl
Fractals and self similarity, Indiana Univ. Math. J., Volume 30 (1981), pp. 713-747 | MR | Zbl | DOI
A continued fraction titbit, Symposium in Honor of Benoit Mandelbrot (Curaçao, 1995), Fractals, Volume 3 (1995), pp. 641-650 | MR | Zbl
A new class of continued fraction expansions, Acta Arith., Volume 1 (1991), pp. 1-39 | MR | Zbl | DOI
Natural extensions and entropy of -continued fractions, Nonlinearity, Volume 25 (2012), pp. 2207-2243 | MR | Zbl | DOI
Symbolic dynamics for the modular surface and beyond, Bull. Amer. Math. Soc. (N.S.), Volume 44 (2007), pp. 87-132 | MR | Zbl | DOI
Structure of attractors for -continued fraction transformations, J. Mod. Dyn., Volume 4 (2010), pp. 637-691 | MR | Zbl | DOI
On the entropy of Japanese continued fractions, Discrete Contin. Dyn. Syst., Volume 20 (2008), pp. 673-711 | MR | Zbl | DOI
Continued fractions and Brjuno functions, J. Comput. Appl. Math., Volume 105 (1999), pp. 403-415 | MR | Zbl | DOI
Nearest -multiple fractions, Spectrum and dynamics, Volume 52 (2010), pp. 147-184 | MR | Zbl | DOI
Symbolic dynamics for the geodesic flow on Hecke surfaces, J. Mod. Dyn., Volume 2 (2008), pp. 581-627 | MR | Zbl | DOI
Metrical theory for a class of continued fraction transformations and their natural extensions, Tokyo J. Math., Volume 4 (1981), pp. 399-426 | MR | Zbl | DOI
Continued fractions, geodesic flows and Ford circles, Algorithms, fractals, and dynamics: Okayama/Kyoto, Volume 1992 (1995), pp. 179-191 | MR | Zbl | DOI
On the invariant measure for the transformations associated with some real continued-fractions, Keio Engrg. Rep., Volume 30 (1977), pp. 159-175 | MR | Zbl
Substitutions and 1/2-discrepancy of , Acta Arith., Volume 154 (2012), pp. 1-28 | MR | Zbl | DOI
1/2 -Heavy sequences driven by rotation , Monatsh. Math., Volume 175 (2014), pp. 595-612 | Zbl | MR | DOI
A Class of Continued Fractions Associated with Certain Properly Discontinuous Groups, Duke Math. J., Volume 21 (1954), pp. 549-563 | MR | Zbl | DOI
Remarks on the Rosen -continued fractions, Number theory with an emphasis on the Markoff spectrum (Pollington, A.; Moran, W., eds.), Dekker, New York, 1993, pp. 227-238 | MR | Zbl
The modular surface and continued fractions, J. London Math. Soc. (2), Volume 31 (1985), pp. 69-80 | MR | Zbl | DOI
Beyond Sturmian sequences: coding linear trajectories in the regular octagon, Proc. Lond. Math. Soc. (3), Volume 2 (2011), pp. 291-340 | MR | Zbl | DOI
Euclidean Dynamics, Discrete and Continuous Dynamical Systems – Series S, American Institute of Mathematical Sciences (2006), pp. 281-352 | MR | Zbl
Gauss measures for transformations on the space of interval exchange maps, Ann. Math., Volume 115 (1982), pp. 201-242 | MR | Zbl | DOI
Cité par Sources :






