In this note, we give simple examples of sets of quadratic forms that have minimal -universality criteria of multiple cardinalities. This answers a question of Kim, Kim, and Oh [KKO05] in the negative.
Nous donnons des exemples simples d’ensembles de formes quadratiques qui ont des critères d’universalité minimaux de plusieurs cardinalités. Nous donnons ainsi une réponse négative à une question de Kim, Kim et Oh [KKO05].
Keywords: universality criteria, quadratic forms
Elkies, Noam D. 1 ; Kane, Daniel M. 2 ; Kominers, Scott Duke 3
@article{JTNB_2013__25_3_557_0,
author = {Elkies, Noam D. and Kane, Daniel M. and Kominers, Scott Duke},
title = {Minimal $\mathcal{S}$-universality criteria may vary in size},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {557--563},
year = {2013},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {25},
number = {3},
doi = {10.5802/jtnb.848},
zbl = {1286.11046},
mrnumber = {3179676},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jtnb.848/}
}
TY - JOUR
AU - Elkies, Noam D.
AU - Kane, Daniel M.
AU - Kominers, Scott Duke
TI - Minimal $\mathcal{S}$-universality criteria may vary in size
JO - Journal de théorie des nombres de Bordeaux
PY - 2013
SP - 557
EP - 563
VL - 25
IS - 3
PB - Société Arithmétique de Bordeaux
UR - https://www.numdam.org/articles/10.5802/jtnb.848/
DO - 10.5802/jtnb.848
LA - en
ID - JTNB_2013__25_3_557_0
ER -
%0 Journal Article
%A Elkies, Noam D.
%A Kane, Daniel M.
%A Kominers, Scott Duke
%T Minimal $\mathcal{S}$-universality criteria may vary in size
%J Journal de théorie des nombres de Bordeaux
%D 2013
%P 557-563
%V 25
%N 3
%I Société Arithmétique de Bordeaux
%U https://www.numdam.org/articles/10.5802/jtnb.848/
%R 10.5802/jtnb.848
%G en
%F JTNB_2013__25_3_557_0
Elkies, Noam D.; Kane, Daniel M.; Kominers, Scott Duke. Minimal $\mathcal{S}$-universality criteria may vary in size. Journal de théorie des nombres de Bordeaux, Tome 25 (2013) no. 3, pp. 557-563. doi: 10.5802/jtnb.848
[Bha00] M. Bhargava, On the Conway-Schneeberger fifteen theorem. Quadratic forms and their applications: Proceedings of the Conference on Quadratic Forms and Their Applications, July 5–9, 1999, University College Dublin, Contemporary Mathematics, vol. 272, American Mathematical Society, 2000, pp. 27–37. | Zbl | MR
[Con00] J. H. Conway, Universal quadratic forms and the fifteen theorem. Quadratic forms and their applications: Proceedings of the Conference on Quadratic Forms and Their Applications, July 5–9, 1999, University College Dublin, Contemporary Mathematics, vol. 272, American Mathematical Society, 2000, pp. 23–26. | Zbl | MR
[Kim04] M.-H. Kim, Recent developments on universal forms. Algebraic and Arithmetic Theory of Quadratic Forms, Contemporary Mathematics, vol. 344, American Mathematical Society, 2004, pp. 215–228. | Zbl | MR
[KKO99] B. M. Kim, M.-H. Kim, and B.-K. Oh, -universal positive definite integral quinary quadratic forms. Integral quadratic forms and lattices: Proceedings of the International Conference on Integral Quadratic Forms and Lattices, June 15–19, 1998, Seoul National University, Korea, Contemporary Mathematics, vol. 249, American Mathematical Society, 1999, pp. 51–62. | Zbl | MR
[KKO05] —, A finiteness theorem for representability of quadratic forms by forms. Journal fur die Reine und Angewandte Mathematik 581 (2005), 23–30. | Zbl | MR
[Kom08a] S. D. Kominers, The -universality criterion is unique. Preprint, arXiv:0807.2099, 2008. | MR
[Kom08b] —, Uniqueness of the -universality criterion. Note di Matematica 28 (2008), no. 2, 203–206. | MR
[Oh00] B.-K. Oh, Universal -lattices of minimal rank. Proceedings of the American Mathematical Society 128 (2000), 683–689. | Zbl | MR
Cité par Sources :






