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Minimal S-universality criteria
may vary in size

par Noam D. ELKIES, Daniel M. KANE et Scott Duke KOMINERS

Résumé. Nous donnons des exemples simples d’ensembles S de
formes quadratiques qui ont des critères d’universalité minimaux
de plusieurs cardinalités. Nous donnons ainsi une réponse négative
à une question de Kim, Kim et Oh [KKO05].

Abstract. In this note, we give simple examples of sets S
of quadratic forms that have minimal S-universality criteria of
multiple cardinalities. This answers a question of Kim, Kim, and
Oh [KKO05] in the negative.

1. Introduction

A quadratic form Q represents another quadratic form L if there exists a
Z-linear, bilinear form-preserving injection L→ Q. In this note, we consider
only positive-definite quadratic forms, and assume unless stated otherwise
that every form is classically integral (equivalently: has a Gram matrix
with integer entries). For a set S of such forms, a quadratic form is called
(classically) S-universal if it represents all quadratic forms in S.

Denote by N the set {1, 2, 3, . . .} of natural numbers. In 1993, Conway
and Schneeberger (see [Bha00, Con00]) proved the “Fifteen Theorem”:
{ax2 : a ∈ N}-universal forms can be exactly characterized as the set of
forms which represent all of the forms in the finite set

{x2, 2x2, 3x2, 5x2, 6x2, 7x2, 10x2, 14x2, 15x2}.
This set is thus said to be a “criterion set” for {ax2 : a ∈ N}. In general,
for a set S of quadratic forms of bounded rank, a form Q is S-universal if
it represents every form in S; an S-criterion set is a subset S∗ ⊂ S such
that every S∗-universal form is S-universal. Following the Fifteen Theorem,
Kim, Kim, and Oh [KKO05] proved that, surprisingly, finite S-universality
criteria exist in general.

Theorem 1.1 (Kim, Kim, and Oh [KKO05]). Let S be any set of quadratic
forms of bounded rank. Then, there exists a finite S-criterion set.
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Kim, Kim, and Oh [KKO05] observed that there may be multiple S-
criterion sets S∗ ⊂ S which are minimal in the sense that for each L ∈ S∗
there exists a Q that is (S∗ \ {L})-universal but not S-universal.1

Given this observation, they asked the following question:

Question (Kim, Kim, and Oh [KKO05]; Kim [Kim04]). Is it the case that
for all sets S of quadratic forms (of bounded rank), all minimal S-criterion
sets have the same cardinality? Formally, is

|S∗| =
∣∣S ′∗∣∣

for all minimal S-criterion sets S∗ and S ′∗?

In this brief note, we give simple examples that answer this question in
the negative. In each case we choose some quadratic form A, and let S be
the set of quadratic forms represented by A, so that S∗ = {A} is a minimal
S-criterion set. We then exhibit one or more S ′∗ ⊂ S that are finite but of
cardinality 2 or higher, and prove that S ′∗ is also a minimal S-criterion set.

We first give an example where A is diagonal of rank 3 and S ′∗ consists of
one diagonal form of rank 2 and one of rank 3. We then give even simpler
examples of higher rank where each L ∈ S ′∗ has rank smaller than that
of A, often with A = ⊕L∈S′∗L.

It will at times be convenient to switch from the terminology of quadratic
forms to the equivalent notions for lattices; we shall do this henceforth
without further comment. For example we identify the form

〈
1
〉
with the

lattice Z.

2. An example of rank 3

Let A :=
〈
1
〉
⊕

〈
1
〉
⊕

〈
2
〉
; that is, let A be the orthogonal direct sum of

two copies of the form
〈
1
〉
and one copy of the form

〈
2
〉
. Let B :=

〈
1
〉
⊕

〈
1
〉

and C :=
〈
2
〉
⊕

〈
2
〉
⊕

〈
2
〉
. Let S be the set of quadratic forms represented

by A.

Theorem 2.1. Both {A} and {B,C} are minimal S-criterion sets.

Theorem 2.1 provides an example of two minimal S-criterion sets of
different cardinalities.

Proof of Theorem 2.1. Clearly, {A} is a minimal S-criterion set. Moreover,
it is clear that while B,C ∈ S, neither {B} nor {C} is an S-criterion set
since neither B nor C can embed A. It therefore only remains to show that
{B,C} is an S-criterion set. To show this, it suffices to prove that any
quadratic form Q that represents both B and C also represents A.

1Kim, Kim, and Oh [KKO05] gave a simple example of a set of quadratic forms S with multiple
minimal S-criterion sets: S =

{〈
2i

〉
⊕

〈
2j

〉
⊕

〈
2k

〉
: 0 ≤ i, j, k ∈ Z

}
, which has S-criterion sets{〈

1
〉
⊕

〈
1
〉
⊕

〈
1
〉

,
〈
1
〉
⊕

〈
1
〉
⊕

〈
2
〉}

and
{〈

1
〉
⊕

〈
1
〉
⊕

〈
1
〉

,
〈

2
〉
⊕

〈
2
〉
⊕

〈
2
〉}

.
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First, we note that any vector v of norm 2 in an integer-matrix quadratic
form Q that is not a sum of two orthogonal Q-vectors of norm 1 must be
orthogonal to all Q-vectors of norm 1. Indeed, if v, w ∈ Q, (v, v) = 2,
(w,w) = 1, and (v, w) 6= 0, then we may assume that (v, w) = 1 (by
Cauchy-Schwarz, (v, w) is either 1 or −1, and in the latter case we may
replace w by −w). Then v = w+(v−w), where w and v−w are orthogonal
vectors of norm 1.

Suppose for sake of contradiction that Q is a quadratic form that rep-
resents B and C but not A. Since Q represents B but not A, there is no
norm-2 vector of Q orthogonal to all norm-1 vectors of Q. Since Q rep-
resents C, it must contain three orthogonal norm-2 vectors, u, v, and w.
By the above observation, we may write u as a sum of norm-1 vectors, say
u = x+ y for some orthogonal norm-1 vectors x, y ∈ Q.

Now, each of v and w is orthogonal to u but not orthogonal to both
x and y (since otherwise we could embed A as the span of {x, y, v} or
{x, y, w}). We claim that this implies that both v and w are of the form
±(x−y): Since v is not orthogonal to both x and y, we may assume without
loss of generality that v is not orthogonal to x. Perhaps replacing v with
−v, we may assume that (v, x) = 1. We then have v = x+ z for some unit
vector z orthogonal to x. We have

0 = (u, v) = (x+ y, x+ z) = (x, x) + (x, z) + (y, x) + (y, z) = 1 + (y, z),
hence (y, z) = −1. Since both y and z are unit vectors, this implies that
z = −y, hence v = x − y. An analogous argument shows that w is of the
form ±(x− y).

Finally, if both v and w are of the form ±(x− y), then (v, w) ∈ {2,−2},
contradicting the fact that v and w are orthogonal. �

3. Examples of higher rank

We begin with a simple example of rank 9. We give two proofs of the
correctness of this example, each of which suggests a different generaliza-
tion.

Proposition 3.1. Let A = E8⊕Z, and let S be the set of quadratic forms
represented by A. Then both {A} and {E8,Z} are minimal S-criterion sets.

Proof. As in the proof of Theorem 2.1, we need only prove that any qua-
dratic form Q that represents both E8 and Z also represents E8 ⊕ Z.

First argument. Fix a copy of E8 in Q. Choose any copy of Z in Q, that
is, any vector v ∈ Q with (v, v) = 1. Let π : Q→E8 ⊗ Q be orthogonal
projection. Then, (π(v), w) = (v, w) ∈ Z for all w ∈ E8, so π(v) ∈ E∗8 .
But E8 is self-dual, and has minimal norm 2. Since (π(v), π(v)) ≤ (v, v),
it follows that π(v) = 0, that is, v is orthogonal to E8. Hence Q contains
E8 ⊕ Z as claimed.
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Second argument. Since E8 and Z are unimodular, they are direct sum-
mands of Q (again because π(v) ∈ E8 for all v ∈ Q, and likewise for the
projection to Z⊗Q). But E8 and Z are indecomposable, and any positive-
definite lattice is uniquely the direct sum of indecomposable summands.
Hence Q = ⊕kQk for some indecomposable Qk ⊂ Q, which include E8
and Z, so again we conclude that Q represents E8 ⊕ Z. �

The first argument for Proposition 3.1 generalizes as follows.

Proposition 3.2. Let A = L ⊕ L′, where L′ is generated by vectors vi of
norms (vi, vi) less than the minimal norm of nonzero vectors in the dual
lattice2 L∗. Let S be the set of quadratic forms represented by A. Then, both
{A} and {L,L′} are minimal S-criterion sets.

Proof. As before, it is enough to show that if Q represents both L and L′
then it represents L⊕L′. Let π be the orthogonal projection to L⊗Q. Then
π(vi) ∈ L∗ for each i, whence π(vi) = 0 because

(π(vi), π(vi)) ≤ (vi, vi) < min
v∈L∗
v 6=0

(v, v).

Thus, the copy of L′ generated by the vi is orthogonal to L. This gives the
desired representation of L⊕ L′ by Q. �

Examples. We may take L′ = Zn for any n ∈ N, and L ∈ {E6, E7, E8};
choosing L = E6 and n = 1 gives an example of rank 7, the smallest we
have found with this technique. We may also take L to be the Leech lattice;
then L′ can be any lattice generated by its vectors of norms 1, 2, and 3.
There are even examples with neither L nor L′ unimodular — indeed, such
examples may have arbitrarily large discriminants. For instance, let Λ23 be
the laminated lattice of rank 23 (the intersection of the Leech lattice with
the orthogonal complement of one of its minimal vectors); this is a lattice
of discriminant 4 and minimal dual norm 3. So we can take L = Λn

23 for
arbitrary n ∈ N, and choose any root lattice for L′.

The second argument for Proposition 3.1 generalizes in a different direc-
tion. We use the following notations. For a collection Π of sets, let U(Π)
be their union ∪P∈ΠP; and for a finite set P of lattices, let P(P) be the
direct sum ⊕L∈PL. Say that two lattices L,L′ are coprime if they have no
indecomposable summands in common.

Proposition 3.3. Let A = P(P), where P is a finite set of pairwise co-
prime, unimodular lattices; and let Π be a family of subsets of P such that
U(Π) = P. Then S ′∗ := {P(R) : R ∈ Π} is an S-criterion set for the set S

2This dual lattice is the only lattice we consider that might fail to be classically integral.
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of quadratic forms represented by A. Moreover, S ′∗ is a minimal S-criterion
set if and only if U(Π \ {R}) is smaller than P for each R ∈ Π.

Proof. We repeatedly apply the observation that if P is a set of pairwise
coprime lattices, each of which is a direct summand of a lattice Q, then
P(P) is also a direct summand of Q. Since any unimodular sublattice of
an integer-matrix lattice is a direct summand, it follows that Q represents
P(R) for each R ∈ Π ⇐⇒ Q represents each lattice in U(Π) = P ⇐⇒
Q represents P(P) = A. That is, S ′∗ is a criterion set for A. Moreover,
replacing Π by any subset Π′ = Π \ {R} shows that {P(R) : R ∈ Π′} is a
criterion set for P(U(Π′)). Thus S ′∗ is minimal if and only if U(Π\{R}) ( P
for each R ∈ Π. �

Examples. We may take for Π any partition of P, and then A = P(S ′∗) =
⊕L∈S′∗L. Proposition 3.1 is the special case P = {E8,Z}, Π = {{E8}, {Z}}.
(The similar case P = {E8,Z8}, Π = {{E8}, {Z8}} was in effect used
already by Oh [Oh00, Theorem 3.1] and the third author [Kom08a] in the
study of 8-universality criteria.) Since |P| can be any natural number n,
Proposition 3.3 produces for each n a lattice A for which S has minimal
criterion sets of (at least) n distinct cardinalities.

4. Remarks

The examples presented here show that minimal S-criterion sets may
vary in size. Further examples can be obtained by mixing the techniques of
Theorem 2.1 and Propositions 3.2 and 3.3; for instance,

{
〈
1
〉
⊕

〈
1
〉
⊕

〈
2
〉
⊕ E8 ⊕ Λ23} and {

〈
1
〉
⊕

〈
1
〉
,
〈
2
〉
⊕

〈
2
〉
⊕

〈
2
〉
⊕ E8,Λ23}

are both minimal criterion sets for the set of lattices represented by〈
1
〉
⊕

〈
1
〉
⊕

〈
2
〉
⊕E8 ⊕Λ23. However, it is unclear (and appears difficult to

characterize in general) for which S this phenomenon occurs.
For the sets Sn of rank-n quadratic forms, criterion sets are known only

in the cases n = 1, 2, 8 (see [Bha00, Con00], [KKO99], and [Oh00], re-
spectively). Few criterion sets beyond those for Sn (n = 1, 2, 8) have been
explicitly computed.

Meanwhile, in the cases n = 1, 2, 8, the minimal Sn-criterion sets are
known to be unique (see [Kim04], [Kom08b], and [Kom08a]), in which case
the answer to the question we examine is (trivially) affirmative. But there
is not yet a general characterization of the S that have unique minimal
S-criterion sets (see [Kim04]). It seems likely that such a result would be
essential in making progress towards a general answer to the question of
Kim, Kim, and Oh [KKO05] that we studied here.
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