An overview on the local limit of non-local conservation laws, and a new proof of a compactness estimate
Journées équations aux dérivées partielles (2023), Exposé no. 10, 14 p.

Consider a non-local (i.e., involving a convolution term) conservation law: when the convolution term converges to a Dirac delta, in the limit we formally recover a classical (or “local”) conservation law. In this note we overview recent progress on this so-called non-local to local limit and in particular we discuss the case of anistropic kernels, which is extremely relevant in view of applications to traffic models. We also provide a new proof of a related compactness estimate.

Publié le :
DOI : 10.5802/jedp.681
Classification : 35L65
Keywords: non-local to local limit, non-local conservation laws, singular local limit, traffic models.

Colombo, Maria 1 ; Crippa, Gianluca 2 ; Marconi, Elio 3 ; Spinolo, Laura V. 4

1 EPFL B, Station 8 CH-1015 Lausanne, Switzerland
2 Departement Mathematik und Informatik Universität Basel Spiegelgasse 1, CH-4051 Basel, Switzerland
3 Dipartimento di Matematica “Tullio Levi-Civita” Università degli Studi di Padova via Trieste 63, 35131 Padua, Italy
4 CNR-IMATI “E. Magenes” via Ferrata 5, I-27100 Pavia, Italy
@incollection{JEDP_2023____A10_0,
     author = {Colombo, Maria and Crippa, Gianluca and Marconi, Elio and Spinolo, Laura V.},
     title = {An overview on the local limit of non-local conservation laws, and a new proof of a compactness estimate},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:10},
     pages = {1--14},
     year = {2023},
     publisher = {R\'eseau th\'ematique AEDP du CNRS},
     doi = {10.5802/jedp.681},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jedp.681/}
}
TY  - JOUR
AU  - Colombo, Maria
AU  - Crippa, Gianluca
AU  - Marconi, Elio
AU  - Spinolo, Laura V.
TI  - An overview on the local limit of non-local conservation laws, and a new proof of a compactness estimate
JO  - Journées équations aux dérivées partielles
N1  - talk:10
PY  - 2023
SP  - 1
EP  - 14
PB  - Réseau thématique AEDP du CNRS
UR  - https://www.numdam.org/articles/10.5802/jedp.681/
DO  - 10.5802/jedp.681
LA  - en
ID  - JEDP_2023____A10_0
ER  - 
%0 Journal Article
%A Colombo, Maria
%A Crippa, Gianluca
%A Marconi, Elio
%A Spinolo, Laura V.
%T An overview on the local limit of non-local conservation laws, and a new proof of a compactness estimate
%J Journées équations aux dérivées partielles
%Z talk:10
%D 2023
%P 1-14
%I Réseau thématique AEDP du CNRS
%U https://www.numdam.org/articles/10.5802/jedp.681/
%R 10.5802/jedp.681
%G en
%F JEDP_2023____A10_0
Colombo, Maria; Crippa, Gianluca; Marconi, Elio; Spinolo, Laura V. An overview on the local limit of non-local conservation laws, and a new proof of a compactness estimate. Journées équations aux dérivées partielles (2023), Exposé no. 10, 14 p.. doi: 10.5802/jedp.681

[1] Amorim, Paulo; Colombo, Rinaldo M.; Teixeira, Andreia On the numerical integration of scalar nonlocal conservation laws, ESAIM, Math. Model. Numer. Anal., Volume 49 (2015) no. 1, pp. 19-37 | Numdam | Zbl | DOI | MR

[2] Betancourt, Fernando; Bürger, Raimund; Karlsen, Kenneth H.; Tory, Elmer M. On nonlocal conservation laws modelling sedimentation, Nonlinearity, Volume 24 (2011) no. 3, pp. 855-885 | Zbl | DOI | MR

[3] Blandin, Sebastien; Goatin, Paola Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numer. Math., Volume 132 (2016) no. 2, pp. 217-241 | Zbl | DOI | MR

[4] Bressan, Alberto; Shen, Wen On traffic flow with nonlocal flux: a relaxation representation, Arch. Ration. Mech. Anal., Volume 237 (2020) no. 3, pp. 1213-1236 | DOI | Zbl | MR

[5] Bressan, Alberto; Shen, Wen Entropy admissibility of the limit solution for a nonlocal model of traffic flow, Commun. Math. Sci., Volume 19 (2021) no. 5, pp. 1447-1450 | Zbl | DOI | MR

[6] Calderoni, Paola; Pulvirenti, Mario Propagation of chaos for Burgers’ equation, Ann. Inst. Henri Poincaré, Nouv. Sér., Sect. A, Volume 39 (1983) no. 1, pp. 85-97 | Numdam | Zbl | MR

[7] Chiarello, Felisia Angela An overview of non-local traffic flow models, Mathematical descriptions of traffic flow: micro, macro and kinetic models. Selected papers based on the presentations of the mini-symposium at ICIAM 2019, Valencia, Spain, July 2019, Springer, 2021, pp. 79-91 | DOI | Zbl | MR

[8] Coclite, Giuseppe M.; Colombo, Maria; Crippa, Gianluca; Nitti, Nicola De; Keimer, Alexander; Marconi, Elio; Pflug, Lukas; Spinolo, Laura V. Oleĭnik-type estimates for nonlocal conservation laws and applications to the nonlocal-to-local limit (2023) (to appear in J. Hyperbolic Differ. Equ.) | arXiv

[9] Coclite, Giuseppe M.; Coron, Jean-Michel; De Nitti, Nicola; Keimer, Alexander; Pflug, Lukas A general result on the approximation of local conservation laws by nonlocal conservation laws: The singular limit problem for exponential kernels, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 40 (2022) no. 5, pp. 1205-1223 | DOI | Zbl

[10] Coclite, Giuseppe M.; De Nitti, Nicola; Keimer, Alexander; Pflug, Lukas Singular limits with vanishing viscosity for nonlocal conservation laws, Nonlinear Anal., Theory Methods Appl., Volume 211 (2021), 112370, 12 pages | Zbl | DOI | MR

[11] Coclite, Giuseppe M.; Karlsen, Kenneth H.; Risebro, Nils Henrik A nonlocal Lagrangian traffic flow model and the zero-filter limit, Z. Angew. Math. Phys., Volume 75 (2024) no. 2, 66, 31 pages | Zbl | MR

[12] Colombo, Maria; Crippa, Gianluca; Graff, Marie; Spinolo, Laura V. On the role of numerical viscosity in the study of the local limit of nonlocal conservation laws, ESAIM, Math. Model. Numer. Anal., Volume 55 (2021) no. 6, pp. 2705-2723 | Zbl | DOI | MR

[13] Colombo, Maria; Crippa, Gianluca; Marconi, Elio; Spinolo, Laura V. Local limit of nonlocal traffic models: convergence results and total variation blow-up, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 38 (2021) no. 5, pp. 1653-1666 | Zbl | MR | Numdam

[14] Colombo, Maria; Crippa, Gianluca; Marconi, Elio; Spinolo, Laura V. Nonlocal traffic models with general kernels: singular limit, entropy admissibility, and convergence rate, Arch. Ration. Mech. Anal., Volume 247 (2023) no. 2, p. 32 | DOI | Zbl | MR

[15] Colombo, Maria; Crippa, Gianluca; Spinolo, Laura V. On the singular local limit for conservation laws with nonlocal fluxes, Arch. Ration. Mech. Anal., Volume 233 (2019) no. 3, pp. 1131-1167 | DOI | Zbl | MR

[16] Colombo, Rinaldo M.; Garavello, Mauro; Lécureux-Mercier, Magali A class of nonlocal models for pedestrian traffic, Math. Models Methods Appl. Sci., Volume 22 (2012) no. 4, 1150023, 34 pages | Zbl | DOI | MR

[17] Colombo, Rinaldo M.; Herty, Michael; Mercier, Magali Control of the continuity equation with a non local flow, ESAIM, Control Optim. Calc. Var., Volume 17 (2011) no. 2, pp. 353-379 | Numdam | Zbl | DOI | MR

[18] Crippa, Gianluca; Lécureux-Mercier, Magali Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow, NoDEA, Nonlinear Differ. Equ. Appl., Volume 20 (2013) no. 3, pp. 523-537 | Zbl | DOI | MR

[19] Dafermos, Constantine M. Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften, 325, Springer, 2016, xxxviii+826 pages | DOI | MR

[20] Du, Qiang; Huang, Kuang; Scott, James; Shen, Wen A space-time nonlocal traffic flow model: relaxation representation and local limit, Discrete Contin. Dyn. Syst., Volume 43 (2023) no. 9, pp. 3456-3484 | MR | DOI | Zbl

[21] Friedrich, Jan; Göttlich, Simone; Keimer, Alexander; Pflug, Lukas Conservation laws with nonlocal velocity: the singular limit problem, SIAM J. Appl. Math., Volume 84 (2024) no. 2, pp. 497-522 | DOI | Zbl | MR

[22] Keimer, Alexander; Pflug, Lukas Existence, uniqueness and regularity results on nonlocal balance laws, J. Differ. Equations, Volume 263 (2017) no. 7, pp. 4023-4069 | Zbl | DOI | MR

[23] Keimer, Alexander; Pflug, Lukas On approximation of local conservation laws by nonlocal conservation laws, J. Math. Anal. Appl., Volume 475 (2019) no. 2, pp. 1927-1955 | Zbl | DOI | MR

[24] Keimer, Alexander; Pflug, Lukas On the singular limit problem for nonlocal conservation laws: A general approximation result for kernels with fixed support (2023) | arXiv

[25] Kružkov, Stanislav N. First order quasilinear equations with several independent variables, Mat. Sb., N. Ser., Volume 81 (1970), pp. 228-255 | MR

[26] Kuznetsov, N. N. Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation, USSR Comput. Math. Math. Phys., Volume 16 (1978) no. 6, pp. 105-119 | DOI | Zbl

[27] Lighthill, Michael; Whitham, Gerald On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. R. Soc. Lond., Ser. A, Volume 229 (1955), pp. 317-345 | Zbl | MR

[28] Richards, Paul I. Shock waves on the highway, Oper. Res., Volume 4 (1956) no. 1, pp. 42-51 | DOI | Zbl | MR

[29] Zumbrun, Kevin On a nonlocal dispersive equation modeling particle suspensions, Q. Appl. Math., Volume 57 (1999) no. 3, pp. 573-600 | DOI | Zbl | MR

Cité par Sources :