Regularization by noise for some nonlinear dispersive PDEs
Journées équations aux dérivées partielles (2023), Talk no. 9, 12 p.

In the context of ODEs or transport PDEs, there are examples where adding a rough stochastic perturbation to the equation at hand actually improves the well-posedness theory. In these notes, we review some results showing how a distributional modulation of the dispersion can also produce a regularization by noise effect for a rather large class of nonlinear dispersive PDEs.

Published online:
DOI: 10.5802/jedp.680
Classification: 60H50, 35A01
Keywords: Nonlinear dispersive PDEs, Nonlinear Young integral

Robert, Tristan 1

1 Université de Lorraine, CNRS, IECL, F-54000 Nancy, France
@incollection{JEDP_2023____A9_0,
     author = {Robert, Tristan},
     title = {Regularization by noise for some nonlinear dispersive {PDEs}},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:9},
     pages = {1--12},
     publisher = {R\'eseau th\'ematique AEDP du CNRS},
     year = {2023},
     doi = {10.5802/jedp.680},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jedp.680/}
}
TY  - JOUR
AU  - Robert, Tristan
TI  - Regularization by noise for some nonlinear dispersive PDEs
JO  - Journées équations aux dérivées partielles
N1  - talk:9
PY  - 2023
SP  - 1
EP  - 12
PB  - Réseau thématique AEDP du CNRS
UR  - https://www.numdam.org/articles/10.5802/jedp.680/
DO  - 10.5802/jedp.680
LA  - en
ID  - JEDP_2023____A9_0
ER  - 
%0 Journal Article
%A Robert, Tristan
%T Regularization by noise for some nonlinear dispersive PDEs
%J Journées équations aux dérivées partielles
%Z talk:9
%D 2023
%P 1-12
%I Réseau thématique AEDP du CNRS
%U https://www.numdam.org/articles/10.5802/jedp.680/
%R 10.5802/jedp.680
%G en
%F JEDP_2023____A9_0
Robert, Tristan. Regularization by noise for some nonlinear dispersive PDEs. Journées équations aux dérivées partielles (2023), Talk no. 9, 12 p.. doi: 10.5802/jedp.680

[1] de Bouard, Anne; Debussche, Arnaud The nonlinear Schrödinger equation with white noise dispersion, J. Funct. Anal., Volume 259 (2010) no. 5, pp. 1300-1321 | DOI | Zbl | MR

[2] Bringmann, Bjoern; Deng, Yu; Nahmod, Andrea R.; Yue, Haitian Invariant Gibbs measures for the three dimensional cubic nonlinear wave equation (2022) | arXiv

[3] Brun, Enguerrand; Li, Guopeng; Liu, Ruoyuan; Zine, Younes Global well-posedness of one-dimensional cubic fractional nonlinear Schrödinger equations in negative Sobolev spaces (2023) | arXiv

[4] Burq, Nicolas; Tzvetkov, Nikolay Random data Cauchy theory for supercritical wave equations. I. Local theory, Invent. Math., Volume 173 (2008) no. 3, pp. 449-475 | DOI | Zbl | MR

[5] Catellier, Rémi; Gubinelli, Massimiliano Averaging along irregular curves and regularisation of ODEs, Stochastic Processes Appl., Volume 126 (2016) no. 8, pp. 2323-2366 | DOI | Zbl | MR

[6] Cazenave, Thierry Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, Courant Institute; American Mathematical Society, 2003 no. 10, xiv+323 pages | MR

[7] Chouk, Khalil; Gubinelli, Massimiliano Nonlinear PDEs with modulated dispersion II: Korteweg–de Vries equation (2014) | arXiv

[8] Chouk, Khalil; Gubinelli, Massimiliano Nonlinear PDEs with modulated dispersion I: Nonlinear Schrödinger equations, Commun. Partial Differ. Equations, Volume 40 (2015) no. 11, pp. 2047-2081 | DOI | Zbl | MR

[9] Davie, Alexander M. Uniqueness of solutions of stochastic differential equations, Int. Math. Res. Not., Volume 2007 (2007) no. 24, rnm124, 26 pages | Zbl | MR

[10] Debussche, Arnaud; Tsutsumi, Yoshio 1D quintic nonlinear Schrödinger equation with white noise dispersion, J. Math. Pures Appl., Volume 96 (2011) no. 4, pp. 363-376 | DOI | Zbl | MR

[11] Deng, Yu; Nahmod, Andrea R.; Yue, Haitian Random tensors, propagation of randomness, and nonlinear dispersive equations, Invent. Math., Volume 228 (2022) no. 2, pp. 539-686 | DOI | Zbl | MR

[12] Duboscq, Romain; Réveillac, Anthony On a stochastic Hardy–Littlewood–Sobolev inequality with application to Strichartz estimates for a noisy dispersion, Ann. Henri Lebesgue, Volume 5 (2022), pp. 263-274 | DOI | Numdam | Zbl | MR

[13] Flandoli, Franco; Gubinelli, Massimiliano; Priola, Enrico Well-posedness of the transport equation by stochastic perturbation, Invent. Math., Volume 180 (2010) no. 1, pp. 1-53 | DOI | MR

[14] Galeati, Lucio Pathwise methods in regularisation by noise, Ph. D. Thesis, Rheinische Friedrich-Wilhelms-Universität Bonn (2022) https://hdl.handle.net/20.500.11811/10089

[15] Geman, Donald; Horowitz, Joseph Occupation densities, Ann. Probab., Volume 8 (1980) no. 1, pp. 1-67 | Zbl | MR

[16] Hairer, Martin A theory of regularity structures, Invent. Math., Volume 198 (2014) no. 2, pp. 269-504 | DOI | Zbl | MR

[17] Krylov, Nicolai V.; Roeckner, Michael Strong solutions of stochastic equations with singular time dependent drift, Probab. Theory Relat. Fields, Volume 131 (2005) no. 2, pp. 154-196 | DOI | Zbl | MR

[18] Linares, Felipe; Ponce, Gustavo Introduction to nonlinear dispersive equations. Second edition, Universitext, Springer, 2015, xiv+301 pages | DOI | MR

[19] Robert, T. Noiseless regularization by noise for some modulated dispersive PDEs (In preparation)

[20] Romito, Marco; Tolomeo, Leonardo Yet another notion of irregularity through small ball estimates (2022) | arXiv

[21] Staffilani, Gigliola; Tataru, Daniel Strichartz estimates for a Schrödinger operator with nonsmooth coefficients, Commun. Partial Differ. Equations, Volume 27 (2002) no. 7-8, pp. 1337-1372 | DOI | Zbl | MR

[22] Stewart, Gavin On the wellposedness for periodic nonlinear Schrödinger equations with white noise dispersion (2022) | arXiv

[23] Veretennikov, Alexander Y. On strong solutions and explicit formulas for solutions of stochastic integral equations, Math. USSR, Sb., Volume 39 (1981), pp. 387-403 | DOI | Zbl

Cited by Sources: