@article{AIHPA_1983__39_1_85_0,
author = {Calderoni, P. and Pulvirenti, M.},
title = {Propagation of chaos for {Burgers'} equation},
journal = {Annales de l'I.H.P. Physique th\'eorique},
pages = {85--97},
year = {1983},
publisher = {Gauthier-Villars},
volume = {39},
number = {1},
mrnumber = {715133},
zbl = {0526.60057},
language = {en},
url = {https://www.numdam.org/item/AIHPA_1983__39_1_85_0/}
}
Calderoni, P.; Pulvirenti, M. Propagation of chaos for Burgers' equation. Annales de l'I.H.P. Physique théorique, Tome 39 (1983) no. 1, pp. 85-97. https://www.numdam.org/item/AIHPA_1983__39_1_85_0/
[1] , Lecture series in differential equations, t. II, p. 177, A. K. Aziz, Ed. Von Nostrand, 1969.
[2] , On a quasi-linear parabolic equation occurring in hydrodynamics. Q. Appl. Math., t. 9, 1951, p. 255. | Zbl | MR
[3] , , Hydrodynamics in two dimensional vortex theory. Comm. Math. Phys., t. 84, 1982, p. 483. | Zbl | MR
[4] , Probability and Measure. John Wiley and Sons, 1979. | MR
[5] , , Symmetric measures on Cartesian products. Trans. Amer. Math. Soc., t. 80, 1955, p. 470-501. | Zbl | MR





