Dynamics of kink clusters for scalar fields in dimension 1+1
Journées équations aux dérivées partielles (2023), Exposé no. 7, 12 p.

We consider classical scalar fields in dimension 1+1 with a self-interaction potential being a symmetric double-well. Such a model admits non-trivial static solutions called kinks and antikinks. A kink cluster is a solution approaching, for large positive times, a superposition of alternating kinks and antikinks whose velocities converge to 0 and mutual distances grow to infinity.

The aim of this note is to expose some developments on asymptotic behaviour of kink clusters obtained in our recent preprint [23]. The results are partially inspired by the notion of “parabolic motions” in the Newtonian n-body problem. We present this analogy and mention its limitations. We also explain the role of kink clusters as universal profiles for formation of multi-kink configurations.

Publié le :
DOI : 10.5802/jedp.678
Classification : 35L71, 35B40, 37K40
Keywords: kink, multi-soliton, nonlinear wave

Jendrej, Jacek 1 ; Lawrie, Andrew 2

1 CNRS and LAGA (UMR 7539) Université Sorbonne Paris Nord 99 av Jean-Baptiste Clément 93430 Villetaneuse, France
2 Department of Mathematics Massachusetts Institute of Technology 77 Massachusetts Ave, 2-267 Cambridge, MA 02139, U.S.A.
@incollection{JEDP_2023____A7_0,
     author = {Jendrej, Jacek and Lawrie, Andrew},
     title = {Dynamics of kink clusters for scalar fields in dimension~$1+1$},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:7},
     pages = {1--12},
     year = {2023},
     publisher = {R\'eseau th\'ematique AEDP du CNRS},
     doi = {10.5802/jedp.678},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jedp.678/}
}
TY  - JOUR
AU  - Jendrej, Jacek
AU  - Lawrie, Andrew
TI  - Dynamics of kink clusters for scalar fields in dimension $1+1$
JO  - Journées équations aux dérivées partielles
N1  - talk:7
PY  - 2023
SP  - 1
EP  - 12
PB  - Réseau thématique AEDP du CNRS
UR  - https://www.numdam.org/articles/10.5802/jedp.678/
DO  - 10.5802/jedp.678
LA  - en
ID  - JEDP_2023____A7_0
ER  - 
%0 Journal Article
%A Jendrej, Jacek
%A Lawrie, Andrew
%T Dynamics of kink clusters for scalar fields in dimension $1+1$
%J Journées équations aux dérivées partielles
%Z talk:7
%D 2023
%P 1-12
%I Réseau thématique AEDP du CNRS
%U https://www.numdam.org/articles/10.5802/jedp.678/
%R 10.5802/jedp.678
%G en
%F JEDP_2023____A7_0
Jendrej, Jacek; Lawrie, Andrew. Dynamics of kink clusters for scalar fields in dimension $1+1$. Journées équations aux dérivées partielles (2023), Exposé no. 7, 12 p.. doi: 10.5802/jedp.678

[1] Banica, Valeria; Miot, Evelyne Global existence and collisions for symmetric configurations of nearly parallel vortex filaments, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 29 (2012) no. 5, pp. 813-832 | DOI | Numdam | Zbl | MR

[2] Bethuel, Fabrice; Orlandi, Giandomenico; Smets, Didier Dynamics of Multiple Degree Ginzburg-Landau Vortices, Commun. Math. Phys., Volume 272 (2007) no. 1, pp. 229-261 | Zbl | DOI | MR

[3] Chen, Gong; Jendrej, Jacek Kink networks for scalar fields in dimension 1+1, Nonlinear Anal., Theory Methods Appl., Volume 215 (2022), 112643, 23 pages | Zbl | MR

[4] Chen, Gong; Liu, Jiaqi; Lu, Bingying Long-time asymptotics and stability for the sine-Gordon equation (2020) (https://arxiv.org/abs/2009.04260)

[5] Côte, Raphaël; Martel, Yvan; Merle, Frank Construction of multi-soliton solutions for the L 2 -supercritical gKdV and NLS equations, Rev. Mat. Iberoam., Volume 27 (2011) no. 1, pp. 273-302 | DOI | Zbl | MR

[6] Côte, Raphaël; Muñoz, Claudio Multi-solitons for nonlinear Klein–Gordon equations, Forum Math. Sigma, Volume 2 (2014), e15, 38 pages | Zbl | MR

[7] Côte, Raphaël; Zaag, Hatem Construction of a Multisoliton Blowup Solution to the Semilinear Wave Equation in One Space Dimension, Commun. Pure Appl. Math., Volume 66 (2013) no. 10, pp. 1541-1581 | DOI | Zbl | MR

[8] Delort, Jean-Marc; Masmoudi, Nader Long-Time Dispersive Estimates for Perturbations of a Kink Solution of One-Dimensional Cubic Wave Equations, Memoirs of the European Mathematical Society, 1, EMS Press, 2022 | DOI | MR

[9] Dunajski, Maciej; Manton, Nicholas Reduced dynamics of Ward solitons, Nonlinearity, Volume 18 (2005) no. 4, pp. 1677-1689 | Zbl | DOI | MR

[10] Duyckaerts, Thomas; Merle, Frank Dynamics of Threshold Solutions for Energy-Critical Wave Equation, IMRP, Int. Math. Res. Pap., Volume 2008 (2008), rpn002, 67 pages | Zbl | MR

[11] Germain, Pierre; Pusateri, Fabio Quadratic Klein–Gordon equations with a potential in one dimension, Forum Math. Pi, Volume 10 (2022), e17, 172 pages | Zbl | MR

[12] Gustafson, Stephen; Sigal, Israel M. Effective dynamics of magnetic vortices, Adv. Math., Volume 199 (2006) no. 2, pp. 448-498 | DOI | Zbl | MR

[13] Hayashi, Nakao; Naumkin, Pavel I. Quadratic nonlinear Klein–Gordon equation in one dimension, J. Math. Phys., Volume 53 (2012) no. 10, 103711, 36 pages | Zbl | MR

[14] Hénon, Michel Integrals of the Toda lattice, Phys. Rev. B, Volume 9 (1974) no. 4, pp. 1921-1923 | DOI | Zbl | MR

[15] Henry, Daniel B.; Perez, J. Fernando; Wreszinski, Walter F. Stability theory for solitary-wave solutions of scalar field equations, Commun. Math. Phys., Volume 85 (1982) no. 3, pp. 351-361 | DOI | Zbl | MR

[16] Jendrej, Jacek Construction of two-bubble solutions for the energy-critical NLS, Anal. PDE, Volume 10 (2017) no. 8, pp. 1923-1959 | DOI | Zbl | MR

[17] Jendrej, Jacek Dynamics of strongly interacting unstable two-solitons for generalized Korteweg–de Vries equations (2018) (https://arxiv.org/abs/1802.06294)

[18] Jendrej, Jacek Nonexistence of radial two-bubbles with opposite signs for the energy-critical wave equation, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 18 (2018) no. 2, pp. 735-778 | Zbl | MR

[19] Jendrej, Jacek Construction of two-bubble solutions for energy-critical wave equations, Am. J. Math., Volume 141 (2019) no. 1, pp. 55-118 | DOI | Zbl | MR

[20] Jendrej, Jacek; Kowalczyk, Michał; Lawrie, Andrew Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line, Duke Math. J., Volume 171 (2022) no. 18, pp. 3643-3705 | Zbl | MR

[21] Jendrej, Jacek; Lawrie, Andrew Two-bubble dynamics for threshold solutions to the wave maps equation, Invent. Math., Volume 213 (2018) no. 3, pp. 1249-1325 | DOI | Zbl | MR

[22] Jendrej, Jacek; Lawrie, Andrew Uniqueness of two-bubble wave maps in high equivariance classes, Commun. Pure Appl. Math., Volume 76 (2022) no. 8, pp. 1608-1656 | DOI | MR

[23] Jendrej, Jacek; Lawrie, Andrew Dynamics of kink clusters for scalar fields in dimension 1+1 (2023) (https://arxiv.org/abs/2303.11297)

[24] Jerrard, Robert L.; Smets, Didier Vortex dynamics for the two-dimensional non-homogeneous Gross–Pitaevskii equation, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 14 (2015) no. 3, pp. 729-766 | Zbl | MR

[25] Jerrard, Robert L.; Soner, Halil Mete Dynamics of Ginzburg‐-Landau Vortices, Arch. Ration. Mech. Anal., Volume 142 (1998) no. 2, pp. 99-125 | DOI | Zbl | MR

[26] Jerrard, Robert L.; Spirn, Daniel Refined Jacobian Estimates and Gross–Pitaevsky Vortex Dynamics, Arch. Ration. Mech. Anal., Volume 190 (2008) no. 3, pp. 425-475 | DOI | Zbl | MR

[27] A Dynamical Perspective on the ϕ 4 Model (Kevrekidis, Panayotis G.; Cuevas-Maraver, Jesús, eds.), Nonlinear Systems and Complexity, 26, Springer, 2019 | DOI | MR

[28] Kowalczyk, Michał; Martel, Yvan; Muñoz, Claudio Kink dynamics in the ϕ 4 model: asymptotic stability for odd perturbations in the energy space, J. Am. Math. Soc., Volume 30 (2017) no. 3, pp. 769-798 | DOI | MR | Zbl

[29] Krieger, Joachim; Nakanishi, Kenji; Schlag, Wilhelm Center-stable manifold of the ground state in the energy space for the critical wave equation, Math. Ann., Volume 361 (2015) no. 1–2, pp. 1-50 | MR | DOI | Zbl

[30] Krieger, Joachim; Raphaël, Pierre; Martel, Yvan Two-soliton solutions to the three-dimensional gravitational Hartree equation, Commun. Pure Appl. Math., Volume 62 (2009) no. 11, pp. 1501-1550 | DOI | Zbl | MR

[31] Lührmann, Jonas; Schlag, Wilhelm Asymptotic stability of the sine-Gordon kink under odd perturbations, Duke Math. J., Volume 172 (2023) no. 14, pp. 2715-2820 | Zbl | MR

[32] Maderna, Ezequiel; Venturelli, Andrea Globally Minimizing Parabolic Motions in the Newtonian N-body Problem, Arch. Ration. Mech. Anal., Volume 194 (2009) no. 1, pp. 283-313 | DOI | Zbl | MR

[33] Manton, Nicholas; Sutcliffe, Paul Topological solitons, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 2004 | DOI | MR

[34] Martel, Yvan Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Am. J. Math., Volume 127 (2005) no. 5, pp. 1103-1140 | DOI | Zbl | MR

[35] Martel, Yvan; Raphael, Pierre Strongly interacting blow up bubbles for the mass critical NLS, Ann. Sci. Éc. Norm. Supér., Volume 51 (2018) no. 3, pp. 701-737 | DOI | Zbl

[36] Merle, Frank Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity, Commun. Math. Phys., Volume 129 (1990) no. 2, pp. 223-240 | DOI | Zbl | MR

[37] Merle, Frank Determination of minimal blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J., Volume 69 (1993) no. 2, pp. 427-454 | Zbl | MR

[38] Merle, Frank; Zaag, Hatem Existence and classification of characteristic points at blowup for a semi-linear wave equation in one space dimension, Am. J. Math., Volume 134 (2012) no. 3, pp. 581-648 | DOI | Zbl | MR

[39] Merle, Frank; Zaag, Hatem Isolatedness of characteristic points at blowup for a 1-dimensional semilinear wave equation., Duke Math. J., Volume 161 (2012) no. 15, pp. 2837-2908 | MR | Zbl

[40] Moutinho, Abdon On the collision problem of two kinks for the ϕ 6 model with low speed (2022) (https://arxiv.org/abs/2211.09749)

[41] Nakanishi, Kenji; Schlag, Wilhelm Global dynamics above the ground state energy for the focusing nonlinear Klein–Gordon equation, J. Differ. Equations, Volume 250 (2011) no. 5, pp. 2299-2333 | DOI | Zbl | MR

[42] Nakanishi, Kenji; Schlag, Wilhelm Global Dynamics Above the Ground State for the Nonlinear Klein–Gordon Equation Without a Radial Assumption, Arch. Ration. Mech. Anal., Volume 203 (2011) no. 3, pp. 809-851 | DOI | Zbl | MR

[43] Ovchinnikov, Yuriĭ N.; Sigal, Israel M. The Ginzburg–Landau equation III. Vortex dynamics, Nonlinearity, Volume 11 (1998) no. 5, pp. 1277-1294 | DOI | Zbl | MR

[44] Pollard, Harry Gravitational systems, J. Math. Mech., Volume 17 (1967), pp. 601-612 | Zbl

[45] Raphaël, Pierre; Szeftel, Jeremie Existence and uniqueness of minimal mass blow up solutions to an inhomogeneous L 2 -critical NLS, J. Am. Math. Soc., Volume 24 (2011) no. 2, pp. 471-546 | DOI | Zbl | MR

[46] Skyrme, Tony H. R. A unified field theory of mesons and baryons, Nucl. Phys., Volume 31 (1962), pp. 556-569 | MR | DOI

[47] Stuart, David M. A. The geodesic approximation for the Yang–Mills–Higgs equations, Commun. Math. Phys., Volume 166 (1994), pp. 149-190 | DOI | Zbl

[48] Vachaspati, Tanmay Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons, Cambridge University Press, 2023 | DOI | MR

[49] Vinh, Nguyen Tien Strongly interacting multi-solitons with logarithmic relative distance for the gKdV equation, Nonlinearity, Volume 30 (2017) no. 12, pp. 4614-4648 | DOI | Zbl | MR

[50] Wadati, Miki; Ohkuma, Kenji Multiple-pole solutions of modified Korteweg–de Vries equation, J. Phys. Soc. Japan, Volume 51 (1982), pp. 2029-2035 | DOI | MR

Cité par Sources :