Linear Landau damping in 3
Journées équations aux dérivées partielles (2023), Talk no. 8, 14 p.

This article gives an overview on linear Landau damping for collisionless kinetic models such as the non-relativistic Vlasov–Poisson and relativistic Vlasov–Maxwell systems near spatially homogenous radial steady states on the phase space x 3 × v 3 .

Cet article donne un aperçu de l’amortissement Landau linéaire pour les modèles cinétiques sans collision tels que les systèmes non relativistes de Vlasov–Poisson et relativistes de Vlasov–Maxwell proches d’états stationnaires radiaux spatialement homogènes sur l’espace des phases x 3 × v 3 .

Published online:
DOI: 10.5802/jedp.679
Classification: 35Q83, 35Q61
Keywords: Vlasov–Poisson, Vlasov–Maxwell, Landau damping, Plasma oscillations, Survival threshold

Nguyen, Toan T. 1

1 Penn State University Department of Mathematics State College, PA 16802 USA
@incollection{JEDP_2023____A8_0,
     author = {Nguyen, Toan T.},
     title = {Linear {Landau} damping in $\mathbb{R}^3$},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:8},
     pages = {1--14},
     publisher = {R\'eseau th\'ematique AEDP du CNRS},
     year = {2023},
     doi = {10.5802/jedp.679},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jedp.679/}
}
TY  - JOUR
AU  - Nguyen, Toan T.
TI  - Linear Landau damping in $\mathbb{R}^3$
JO  - Journées équations aux dérivées partielles
N1  - talk:8
PY  - 2023
SP  - 1
EP  - 14
PB  - Réseau thématique AEDP du CNRS
UR  - https://www.numdam.org/articles/10.5802/jedp.679/
DO  - 10.5802/jedp.679
LA  - en
ID  - JEDP_2023____A8_0
ER  - 
%0 Journal Article
%A Nguyen, Toan T.
%T Linear Landau damping in $\mathbb{R}^3$
%J Journées équations aux dérivées partielles
%Z talk:8
%D 2023
%P 1-14
%I Réseau thématique AEDP du CNRS
%U https://www.numdam.org/articles/10.5802/jedp.679/
%R 10.5802/jedp.679
%G en
%F JEDP_2023____A8_0
Nguyen, Toan T. Linear Landau damping in $\mathbb{R}^3$. Journées équations aux dérivées partielles (2023), Talk no. 8, 14 p.. doi: 10.5802/jedp.679

[1] Bardos, Claude; Degond, Pierre Global existence for the Vlasov–Poisson equation in 3 space variables with small initial data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 2 (1985), pp. 101-118 | Numdam | DOI | Zbl | MR

[2] Bardos, Claude; Ngoan, Ha Tien; Degond, Pierre Existence globale des solutions des équations de Vlasov–Poisson relativistes en dimension 3. (Global solutions for relativistic Vlasov- Poisson equations in three space variables), C. R. Math. Acad. Sci. Paris, Volume 301 (1985), pp. 265-268 | Zbl

[3] Bedrossian, Jacob Suppression of plasma echoes and Landau damping in Sobolev spaces by weak collisions in a Vlasov–Fokker–Planck equation, Ann. PDE, Volume 3 (2017) no. 2, 19, 66 pages | DOI | Zbl | MR

[4] Bedrossian, Jacob; Masmoudi, Nader; Mouhot, Clément Landau damping: paraproducts and Gevrey regularity, Ann. PDE, Volume 2 (2016) no. 1, 4, 71 pages | DOI | Zbl | MR

[5] Bedrossian, Jacob; Masmoudi, Nader; Mouhot, Clément Landau damping in finite regularity for unconfined systems with screened interactions, Commun. Pure Appl. Math., Volume 71 (2018) no. 3, pp. 537-576 | DOI | Zbl | MR

[6] Bedrossian, Jacob; Masmoudi, Nader; Mouhot, Clément Linearized wave-damping structure of Vlasov–Poisson in 3 , SIAM J. Math. Anal., Volume 54 (2022) no. 4, pp. 4379-4406 | DOI | Zbl | MR

[7] Bedrossian, Jacob; Wang, Fei The linearized Vlasov and Vlasov–Fokker–Planck equations in a uniform magnetic field, J. Stat. Phys., Volume 178 (2020) no. 2, pp. 552-594 | DOI | Zbl | MR

[8] Bernstein, Ira B. Waves in a plasma in a magnetic field, Phys. Rev., Volume 109 (1958) no. 1, p. 10 | DOI | Zbl

[9] Bigorgne, Léo Sharp asymptotic behavior of solutions of the 3d Vlasov–Maxwell system with small data, Commun. Math. Phys., Volume 376 (2020) no. 2, pp. 893-992 | DOI | Zbl | MR

[10] Bigorgne, Léo Global existence and modified scattering for the small data solutions to the Vlasov–Maxwell system (2022) | arXiv

[11] Charles, Frédérique; Després, Bruno; Rege, Alexandre; Weder, Ricardo The magnetized Vlasov–Ampère system and the Bernstein–Landau paradox, J. Stat. Phys., Volume 183 (2021) no. 2, 23, 57 pages | DOI | Zbl | MR

[12] Chaturvedi, Sanchit; Luk, Jonathan; Nguyen, Toan T. The Vlasov–Poisson–Landau system in the weakly collisional regime, J. Am. Math. Soc., Volume 36 (2023) no. 4, pp. 1103-1189 | DOI | Zbl | MR

[13] Glassey, Robert T.; Schaeffer, Jack On time decay rates in Landau damping, Commun. Partial Differ. Equations, Volume 20 (1995) no. 3-4, pp. 647-676 | DOI | Zbl | MR

[14] Glassey, Robert T.; Schaeffer, Jack W. Global existence for the relativistic Vlasov–Maxwell system with nearly neutral initial data, Commun. Math. Phys., Volume 119 (1988) no. 3, pp. 353-384 | DOI | Zbl | MR

[15] Glassey, Robert T.; Schaeffer, Jack W. Time decay for solutions to the linearized Vlasov equation, Transp. Theory Stat. Phys., Volume 23 (1994) no. 4, pp. 411-453 | DOI | Zbl | MR

[16] Glassey, Robert T.; Strauss, Walter A. Absence of shocks in an initially dilute collisionless plasma, Commun. Math. Phys., Volume 113 (1987), pp. 191-208 | DOI | Zbl | MR

[17] Grenier, Emmanuel; Nguyen, Toan T.; Rodnianski, Igor Landau damping for analytic and Gevrey data, Math. Res. Lett., Volume 28 (2021) no. 6, pp. 1679-1702 | DOI | Zbl | MR

[18] Grenier, Emmanuel; Nguyen, Toan T.; Rodnianski, Igor Plasma echoes near stable Penrose data, SIAM J. Math. Anal., Volume 54 (2022) no. 1, pp. 940-953 | Zbl | DOI | MR

[19] Han-Kwan, Daniel; Nguyen, Toan T.; Rousset, Frédéric Long time estimates for the Vlasov–Maxwell system in the non-relativistic limit, Commun. Math. Phys., Volume 363 (2018) no. 2, pp. 389-434 | DOI | Zbl | MR

[20] Han-Kwan, Daniel; Nguyen, Toan T.; Rousset, Frédéric Asymptotic stability of equilibria for screened Vlasov–Poisson systems via pointwise dispersive estimates, Ann. PDE, Volume 7 (2021) no. 2, 18, 37 pages | DOI | Zbl | MR

[21] Han-Kwan, Daniel; Nguyen, Toan T.; Rousset, Frédéric On the linearized Vlasov–Poisson system on the whole space around stable homogeneous equilibria, Commun. Math. Phys., Volume 387 (2021) no. 3, pp. 1405-1440 | DOI | Zbl | MR

[22] Han-Kwan, Daniel; Nguyen, Toan T.; Rousset, Frédéric Linear Landau damping for the Vlasov–Maxwell system in 3 (2024) | arXiv

[23] Huang, Lingjia; Nguyen, Quoc-Hung; Xu, Yiran Nonlinear Landau damping for the 2d Vlasov–Poisson system with massless electrons around Penrose-stable equilibria (2022) | arXiv

[24] Huang, Lingjia; Nguyen, Quoc-Hung; Xu, Yiran Sharp estimates for screened Vlasov–Poisson system around Penrose-stable equilibria in d , d3 (2022) | arXiv

[25] Ionescu, Alexandru; Pausader, Benoit; Wang, Xuecheng; Widmayer, Klaus Nonlinear Landau damping for the Vlasov–Poisson system in 3 : the Poisson equilibrium (2022) | arXiv

[26] Landau, Lev On the vibrations of the electronic plasma. (Russian), Zh. Ehksper. Teor. Fiz., Volume 16 (1946), pp. 574-586

[27] Lin, Zhiwu; Strauss, Walter A. Nonlinear stability and instability of relativistic Vlasov–Maxwell systems, Commun. Pure Appl. Math., Volume 60 (2007) no. 6, pp. 789-837 | Zbl | DOI | MR

[28] Lin, Zhiwu; Strauss, Walter A. A sharp stability criterion for the Vlasov–Maxwell system, Invent. Math., Volume 173 (2008) no. 3, pp. 497-546 | Zbl | DOI | MR

[29] Mouhot, Clément; Villani, Cédric On Landau damping, Acta Math., Volume 207 (2011) no. 1, pp. 29-201 | DOI | Zbl | MR

[30] Nguyen, Toan T. Landau damping and the survival threshold (2023) | arXiv

[31] Nguyen, Toan T.; You, Chanjin Plasmons for the Hartree equations with Coulomb interaction (2023) | arXiv

[32] Tristani, Isabelle Landau damping for the linearized Vlasov Poisson equation in a weakly collisional regime, J. Stat. Phys., Volume 169 (2017) no. 1, pp. 107-125 | DOI | Zbl | MR

[33] Trivelpiece, A. W.; Krall, N. A. Principles of Plasma Physics, McGraw-Hill, 1973

[34] Young, Brent On linear Landau damping for relativistic plasmas via Gevrey regularity, J. Differ. Equations, Volume 259 (2015) no. 7, pp. 3233-3273 | DOI | Zbl | MR

[35] Young, Brent Landau damping in relativistic plasmas, J. Math. Phys., Volume 57 (2016) no. 2, 021502, 68 pages | DOI | Zbl | MR

Cited by Sources: