Propagating fronts and terraces in multistable reaction-diffusion equations
Journées équations aux dérivées partielles (2023), Talk no. 6, 15 p.

This short paper will be devoted to propagation phenomena for a general reaction-diffusion equation, i.e. when it may admit an arbitrarily large number of stationary states. Large time propagation can no longer be described by a single front, but by a family of several stacked fronts (or “propagating terrace”) involving intermediate transient equilibria. We will review several strategies, differing in their range of application (homo- or heterogeneous, one- or multi-dimensional, semi- or non-linear equations...), to handle such dynamics.

Published online:
DOI: 10.5802/jedp.677

Giletti, Thomas 1

1 LMBP, UMR 6620, Université Clermont-Auvergne, Campus des Cézeaux, 63177 Aubière Cedex - France
@incollection{JEDP_2023____A6_0,
     author = {Giletti, Thomas},
     title = {Propagating fronts and terraces in multistable reaction-diffusion equations},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:6},
     pages = {1--15},
     publisher = {R\'eseau th\'ematique AEDP du CNRS},
     year = {2023},
     doi = {10.5802/jedp.677},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jedp.677/}
}
TY  - JOUR
AU  - Giletti, Thomas
TI  - Propagating fronts and terraces in multistable reaction-diffusion equations
JO  - Journées équations aux dérivées partielles
N1  - talk:6
PY  - 2023
SP  - 1
EP  - 15
PB  - Réseau thématique AEDP du CNRS
UR  - https://www.numdam.org/articles/10.5802/jedp.677/
DO  - 10.5802/jedp.677
LA  - en
ID  - JEDP_2023____A6_0
ER  - 
%0 Journal Article
%A Giletti, Thomas
%T Propagating fronts and terraces in multistable reaction-diffusion equations
%J Journées équations aux dérivées partielles
%Z talk:6
%D 2023
%P 1-15
%I Réseau thématique AEDP du CNRS
%U https://www.numdam.org/articles/10.5802/jedp.677/
%R 10.5802/jedp.677
%G en
%F JEDP_2023____A6_0
Giletti, Thomas. Propagating fronts and terraces in multistable reaction-diffusion equations. Journées équations aux dérivées partielles (2023), Talk no. 6, 15 p.. doi: 10.5802/jedp.677

[1] An, Jing; Henderson, Christopher; Ryzhik, Lenya Quantitative steepness, semi-FKPP reactions, and pushmi-pullyu fronts, Arch. Ration. Mech. Anal., Volume 247 (2023), 88, 84 pages | Zbl | MR

[2] Angenent, Sigurd The zero set of a solution of a parabolic equation, J. Reine Angew. Math., Volume 390 (1988), pp. 76-96 | Zbl | MR

[3] Aronson, Donald G.; Weinberger, Hans F. Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, Partial Differential Equations and Related Topics, (Goldstein, J. A., ed.) (Lecture Notes in Mathematics), Springer, 1975, pp. 5-49 | Zbl

[4] Aronson, Donald G.; Weinberger, Hans F. Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., Volume 30 (1978), pp. 33-76 | DOI | Zbl

[5] Berestycki, Henri; Hamel, François Generalized transition waves and their properties, Commun. Pure Appl. Math., Volume 65 (2012) no. 5, pp. 592-648 | DOI | Zbl | MR

[6] Bramson, Maury Convergence of solutions of the Kolmogorov equation to travelling waves, Memoirs of the American Mathematical Society, 285, American Mathematical Society, 1983, 190 pages

[7] Ducrot, Arnaud; Giletti, Thomas; Matano, Hiroshi Existence and convergence to a propagating terrace in one-dimensional reaction-diffusion equations, Trans. Am. Math. Soc., Volume 366 (2014) no. 10, pp. 5541-5566 | DOI | Zbl | MR

[8] Fang, Jian; Zhao, Xiao-Qiang Bistable traveling waves for monotone semiflows with applications, J. Eur. Math. Soc., Volume 17 (2015) no. 9, pp. 2243-2288 | DOI | Zbl | MR

[9] Fife, Paul C.; McLeod, John B. The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal., Volume 65 (1977) no. 4, pp. 335-361 | DOI | Zbl | MR

[10] Fisher, Ronald A. The wave of advantageous genes, Ann. Eugenics, London, Volume 7 (1937), pp. 355-369 | DOI | Zbl

[11] Galaktionov, V. A.; Harwin, Petra J. Sturm’s theorems on zero sets in nonlinear parabolic equations, Sturm-Liouville theory, Birkhäuser, 2005, pp. 173-199 | DOI | Zbl

[12] Giletti, Thomas; Kim, Ho-Youn; Kim, Yong-Jung Terrace solutions for non-Lipschitz multistable nonlinearities, SIAM J. Math. Anal., Volume 54 (2022) no. 4, pp. 4785-4805 | DOI | Zbl | MR

[13] Giletti, Thomas; Matano, Hiroshi Existence and uniqueness of propagating terraces, Commun. Contemp. Math., Volume 22 (2020) no. 6, 1950055, 38 pages | Zbl | MR

[14] Giletti, Thomas; Rossi, Luca Pulsating solutions for multidimensional bistable and multistable equations, Math. Ann., Volume 378 (2020) no. 3-4, pp. 1555-1611 | DOI | Zbl | MR

[15] Hamel, François; Nolen, James; Roquejoffre, Jean-Michel; Ryzhik, Lenya A short proof of the logarithmic Bramson correction in Fisher-KPP equations, Netw. Heterog. Media, Volume 8 (2013) no. 1, pp. 275-289 | DOI | Zbl | MR

[16] Hamel, François; Rossi, Luca Spreading sets and one-dimensional symmetry for reaction-diffusion equations, Sémin. Laurent Schwartz, EDP Appl., Volume 2021-2022 (2022), 11, 25 pages | Zbl | Numdam

[17] Jones, Christopher K. R. T. Spherically symmetric solutions of a reaction-diffusion equation, J. Differ. Equations, Volume 49 (1983), pp. 142-169 | DOI | Zbl | MR

[18] Kolmogorov, Andrei N.; Petrovsky, Ivan G.; Piskunov, Nikolaĭ S. Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. État Moscou, Sér. Int., Sect. A: Math. et Mécan., Volume 1 (1937) no. 6, pp. 1-26 | Zbl

[19] Lin, Fang-Hua Nodal sets of solutions of elliptic and parabolic equations, Commun. Pure Appl. Math., Volume 44 (1991) no. 3, pp. 287-308 | Zbl | MR

[20] Matano, Hiroshi Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 29 (1982), pp. 401-441 | Zbl | MR

[21] Murray, James D. Mathematical biology. Vol. 1: An introduction, Interdisciplinary Applied Mathematics, 17, Springer, 2002 | DOI | MR

[22] Murray, James D. Mathematical biology. Vol. 2: Spatial models and biomedical applications, Interdisciplinary Applied Mathematics, 18, Springer, 2003 | DOI | MR

[23] Nadin, Grégoire Critical travelling waves for general heterogeneous one-dimensional reaction-diffusion equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 32 (2015) no. 4, pp. 841-873 | Zbl | DOI | Numdam | MR

[24] Poláčik, Peter Planar propagating terraces and the asymptotic one-dimensional symmetry of solutions of semilinear parabolic equations, SIAM J. Math. Anal., Volume 49 (2017) no. 5, pp. 3716-3740 | DOI | Zbl | MR

[25] Roques, Lionel Modèles de réaction-diffusion pour l’écologie spatiale, Editions Quae, 2013

[26] Rothe, Frantz Convergence to pushed fronts, Rocky Mt. J. Math., Volume 11 (1981) no. 4, pp. 617-633 | Zbl | MR

[27] Uchiyama, Kohei The behavior of solutions of some non-linear diffusion equations for large time, J. Math. Kyoto Univ., Volume 18 (1978) no. 3, pp. 453-508 | Zbl | MR

[28] Weinberger, Hans F. Long-time behavior of a class of biological models, SIAM J. Math. Anal., Volume 13 (1982) no. 3, pp. 353-396 | DOI | Zbl | MR

[29] Weinberger, Hans F. On spreading speeds and traveling waves for growth and migration models in a periodic habitat, J. Math. Biol., Volume 45 (2002) no. 6, pp. 511-548 | DOI | Zbl

[30] Weinberger, Hans F.; Lewis, Mark A.; Li, Bingtuan Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., Volume 45 (2002) no. 3, pp. 183-218 | DOI | Zbl | MR

Cited by Sources: