Optimality conditions for MPECs in terms of directional upper convexifactors
RAIRO. Operations Research, Tome 56 (2022) no. 6, pp. 4303-4316

In this paper, we investigate necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints. For this goal, we introduce an appropriate type of MPEC regularity condition and a stationary concept given in terms of directional upper convexificators and directional upper semi-regular convexificators. The appearing functions are not necessarily smooth/locally Lipschitz/convex/continuous, and the continuity directions’ sets are not assumed to be compact or convex. Finally, notions of directional pseudoconvexity and directional quasiconvexity are used to establish sufficient optimality conditions for MPECs.

DOI : 10.1051/ro/2022203
Classification : 90C30, 90C33, 90C46, 49J52
Keywords: Directional upper convexificators, directional upper semi-regular convexificators, regularity conditions, mathematical programs with equilibrium constraints, optimality conditions
@article{RO_2022__56_6_4303_0,
     author = {Gadhi, Nazih Abderrazzak and Ohda, Mohamed},
     title = {Optimality conditions for {MPECs} in terms of directional upper convexifactors},
     journal = {RAIRO. Operations Research},
     pages = {4303--4316},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {6},
     doi = {10.1051/ro/2022203},
     mrnumber = {4523955},
     zbl = {1536.90209},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022203/}
}
TY  - JOUR
AU  - Gadhi, Nazih Abderrazzak
AU  - Ohda, Mohamed
TI  - Optimality conditions for MPECs in terms of directional upper convexifactors
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 4303
EP  - 4316
VL  - 56
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022203/
DO  - 10.1051/ro/2022203
LA  - en
ID  - RO_2022__56_6_4303_0
ER  - 
%0 Journal Article
%A Gadhi, Nazih Abderrazzak
%A Ohda, Mohamed
%T Optimality conditions for MPECs in terms of directional upper convexifactors
%J RAIRO. Operations Research
%D 2022
%P 4303-4316
%V 56
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022203/
%R 10.1051/ro/2022203
%G en
%F RO_2022__56_6_4303_0
Gadhi, Nazih Abderrazzak; Ohda, Mohamed. Optimality conditions for MPECs in terms of directional upper convexifactors. RAIRO. Operations Research, Tome 56 (2022) no. 6, pp. 4303-4316. doi: 10.1051/ro/2022203

[1] A. A. Ardali, N. Movahedian and S. Nobakhtian, Optimality conditions for nonsmooth mathematical programs with equilibrium constraints, using convexifactors. Optimization 65 (2016) 67–85. | MR | Zbl | DOI

[2] F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory. New York, Springer-Verlag (1998). | MR | Zbl

[3] S. Dempe and M. Pilecka, Necessary optimality conditions for optimistic bilevel programming problems using set-valued programming. J. Glob. Optim. 61 (2015) 769–788. | MR | Zbl | DOI

[4] V. F. Demyanov and V. Jeyakumar, Hunting for a Smaller Convex Subdifferential. J. Glob. Optim. 10 (1997) 305–326. | MR | Zbl | DOI

[5] J. Dutta and S. Chandra, Convexifactors, generalized convexity, and optimality conditions. J. Optim. Theory Appl. 113 (2002) 41–64. | MR | Zbl | DOI

[6] G. M. Ewing, Sufficient conditions for global minima of suitably convex functionals from variational and control theory. SIAM Rev. 19 (1977) 202–220. | MR | Zbl | DOI

[7] M. L. Flegel, Constraint Qualifications and Stationarity Concepts for Mathematical Programs with Equilibrium Constraints. Doctoral Dissertation, Universität Würzburg (2005).

[8] M. L. Flegel and C. Kanzow, A Fritz John approach to first-order optimality conditions for mathematical programs with equilibrium constraints. Optimization 52 (2003) 277–286. | MR | Zbl | DOI

[9] M. L. Flegel and C. Kanzow, Abadie-Type constraint qualification for mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 124 (2005) 595–614. | MR | Zbl | DOI

[10] M. L. Flegel and C. Kanzow, On the guignard constraint qualification for mathematical programs with equilibrium constraints. Optimization 54 (2005) 517–534. | MR | Zbl | DOI

[11] N. A. Gadhi, On variational inequalities using directional convexificators. Optimization 71 (2021) 2891–2905. | MR | Zbl | DOI

[12] N. A. Gadhi, A note on the paper “Necessary and sufficient optimality conditions using convexifactors for mathematical programs with equilibrium constraints”, RAIRO:RO 55 (2021) 3217–3223. | MR | Zbl | Numdam | DOI

[13] N. A. Gadhi, Comments on “A note on the paper optimality conditions for optimistic bilevel programming problem using convexifactors”. J. Optim. Theory Appl. 189 (2021) 938–943. | MR | Zbl | DOI

[14] N. Gadhi, F. Rahou, M. El Idrissi and L. Lafhim, Optimality conditions of a set valued optimization problem with the help of directional convexificators. optimization 70 (2021) 575–590. | MR | Zbl | DOI

[15] J. B. Hiriart-Urruty and C. Lemarechal, Fundamentals of Convex Analysis. Springer-Verlag, Berlin Heidelberg (2001). | MR | Zbl | DOI

[16] V. Jeakumar and D. T. Luc, Nonsmooth Calculus, Minimality, and Monotonicity of Convexificators. J. Optim. Theory Appl. 101 (1999) 599–621. | MR | Zbl | DOI

[17] A. Kabgani and M. Soleimani-Damaneh, Characterization of (weakly/properly/robust) efficient solutions in nonsmooth semiinfinite multiobjective optimization using convexificators. Optimization 67 (2017) 217–235. | MR | Zbl | DOI

[18] A. Kabgani and M. Soleimani-Damaneh, Constraint qualifications and optimality conditions in nonsmooth locally star-shaped optimization using convexificators. Pac. J. Optim. 15 (2019) 399–413. | MR | Zbl

[19] N. Kanzi and S. Nobakhtian, Optimality conditions for nonsmooth semi-infinite multiobjective programming. Optim. Lett. 8 (2014) 1517–1528. | MR | Zbl | DOI

[20] B. Kohli, Necessary and sufficient optimality conditions using convexifactors for mathematical programs with equilibrium constraints. RAIRO:RO 53 (2019) 1617–1632. | MR | Zbl | Numdam | DOI

[21] S. Kaur, Theoretical studies in mathematical programming. Ph.D. thesis, University of Delhi, (1983).

[22] X. F. Li and J. Z. Zhang, Necessary optimality conditions in terms of convexificators in Lipschitz optimization. J. Optim. Theory Appl. 131 (2006) 429–452. | MR | Zbl | DOI

[23] J. E. Martnez-Legaz, Optimality conditions for pseudoconvex minimization over convex sets defined by tangentially convex constraints. Optim. Lett. 9 (2015) 1017–1023. | MR | Zbl | DOI

[24] B. S. Mordukhovich and Y. Shao, On nonconvex subdifferential calculus in Banach spaces. J. Convex Anal. 2 (1995) 211–227. | MR | Zbl

[25] J.-P. Penot and P. Michel, A generalized derivative for calm and stable functions. Differ. Integral Equ. 5 (1992) 433–454. | MR | Zbl

[26] R. T. Rockafellar, Convex Analysis. Princeton, New Jersey (1970). | MR | Zbl | DOI

[27] R. T. Rockafellar and R. Wets, Variational Analysis. Series: Grundlehren der mathematischen Wissenschaften (2009) 317. | MR | Zbl

[28] J. J. Ye, Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints. J. Math. Anal. Appl. 307 (2005) 350–369. | MR | Zbl | DOI

Cité par Sources :