A note on the paper “Necessary and sufficient optimality conditions using convexifactors for mathematical programs with equilibrium constraints”
RAIRO. Operations Research, Tome 55 (2021) no. 5, pp. 3217-3223

In this work, some counterexamples are given to refute some results in the paper by Kohli [RAIRO:OR 53 (2019) 1617–1632]. We correct the fault in some of his results.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2021145
Classification : 90C30, 90C46, 49J52
Keywords: Convexifactor, constraint qualifications, mathematical programs with equilibrium constraints, optimality conditions
@article{RO_2021__55_5_3217_0,
     author = {Gadhi, Nazih Abderrazzak},
     title = {A note on the paper {{\textquotedblleft}Necessary} and sufficient optimality conditions using convexifactors for mathematical programs with equilibrium constraints{\textquotedblright}},
     journal = {RAIRO. Operations Research},
     pages = {3217--3223},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/ro/2021145},
     mrnumber = {4336301},
     zbl = {1485.90132},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2021145/}
}
TY  - JOUR
AU  - Gadhi, Nazih Abderrazzak
TI  - A note on the paper “Necessary and sufficient optimality conditions using convexifactors for mathematical programs with equilibrium constraints”
JO  - RAIRO. Operations Research
PY  - 2021
SP  - 3217
EP  - 3223
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2021145/
DO  - 10.1051/ro/2021145
LA  - en
ID  - RO_2021__55_5_3217_0
ER  - 
%0 Journal Article
%A Gadhi, Nazih Abderrazzak
%T A note on the paper “Necessary and sufficient optimality conditions using convexifactors for mathematical programs with equilibrium constraints”
%J RAIRO. Operations Research
%D 2021
%P 3217-3223
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2021145/
%R 10.1051/ro/2021145
%G en
%F RO_2021__55_5_3217_0
Gadhi, Nazih Abderrazzak. A note on the paper “Necessary and sufficient optimality conditions using convexifactors for mathematical programs with equilibrium constraints”. RAIRO. Operations Research, Tome 55 (2021) no. 5, pp. 3217-3223. doi: 10.1051/ro/2021145

[1] A. A. Ardali, N. Movahedian and S. Nobakhtian, Optimality conditions for nonsmooth mathematical programs with equilibrium constraints, using convexifactors. Optimization 65 (2016) 67–85. | MR | Zbl | DOI

[2] J. Dutta and S. Chandra, Convexifactors, generalized convexity, and optimality conditions. J. Optim. Theory App. 113 (2002) 41–64. | MR | Zbl | DOI

[3] M. L. Flegel, Constraint qualifications and stationarity concepts for mathematical programs with equilibrium constraints, Doctoral dissertation, Universität Würzburg (2005).

[4] M. L. Flegel and C. Kanzow, A Fritz John approach to first-order optimality conditions for mathematical programs with equilibrium constraints. Optimization 52 (2003) 277–286. | MR | Zbl | DOI

[5] M. L. Flegel and C. Kanzow, Abadie-Type constraint qualification for mathematical programs with equilibrium constraints. J. Optim. Theory App. 124 (2005) 595–614. | MR | Zbl | DOI

[6] M. L. Flegel and C. Kanzow, On the guignard constraint qualification for mathematical programs with equilibrium constraints. Optimization 54 (2005) 517–534. | MR | Zbl | DOI

[7] J. B. Hiriart-Urruty and C. Lemarechal, Fundamentals of Convex Analysis. Springer-Verlag, Berlin Heidelberg (2001). | MR | Zbl | DOI

[8] B. Kohli, Necessary and sufficient optimality conditions using convexifactors for mathematical programs with equilibrium constraints. RAIRO:OR 53 (2019) 1617–1632. | MR | Zbl | Numdam | DOI

[9] H. Scheel and S. Scholtes, Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math. Oper. Res. 25 (2000) 1–22. | MR | Zbl | DOI

[10] J. J. Ye, Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints. J. Math. Anal. App. 307 (2005) 350–369. | MR | Zbl | DOI

Cité par Sources :