RATIRO-Oper. Res. 56 (2022) 4303-4316 RAIRO Operations Research
https://doi.org/10.1051/ro/2022203 WWW.rairo-ro.org

OPTIMALITY CONDITIONS FOR MPECS IN TERMS OF DIRECTIONAL
UPPER CONVEXIFACTORS

NAZIH ABDERRAZZAK GADHI® AND MOHAMED OHDA*

Abstract. In this paper, we investigate necessary and sufficient optimality conditions for mathe-
matical programs with equilibrium constraints. For this goal, we introduce an appropriate type of
MPEC regularity condition and a stationary concept given in terms of directional upper convexifica-
tors and directional upper semi-regular convexificators. The appearing functions are not necessarily
smooth/locally Lipschitz/convex/continuous, and the continuity directions’ sets are not assumed to be
compact or convex. Finally, notions of directional pseudoconvexity and directional quasiconvexity are
used to establish sufficient optimality conditions for MPECs.
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1. INTRODUCTION
In this paper, we investigate the following mathematical program with equilibrium constraints:

Minimize f (z)
(MPEC): { g(x) <0, h(z)=0,
TG (@) =0, H(z) >0, G(z)" H(x)=0,

where f : R” - R, g: R* = R™, h : R - R, G :R"” — R! and H : R® — R! are lower semicontinuous
functions; n, m, p, [ € N.

Such a problem has been discussed by several authors at various levels of generality [1,7-10,20,28]. In [8],
Flegel and Kanzow presented a straightforward and elementary approach to first-order optimality conditions
for the MPECs and showed that Fritz-John approach leads to a new optimality condition under a Mangasarian-
Fromovitz-type assumption. In [9], the authors introduced a new Abadie-type constraint qualification for the
MPECs and showed it to be weaker than any of the existing ones. In [1], Ardali et al. defined nonsmooth
stationary conditions based on the convexificators and showed that generalized strong stationary is the first-
order optimality condition under a generalized standard Abadie constraint qualification.

The notion of convexificator can be seen as a generalization of the idea of subdifferential. For a locally Lipschitz
function, most known subdifferentials are convexificators and these subdifferentials may contain the convex hull
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of a convexificator [16]. Noting that convexificators admitted by discontinuous functions may be unbounded
and because the boundedness of convexificators is of crucial importance in many well-known results, Dempe
and Pilecka [3] developed the concept of directional convexificators. They were able to create a convexificator
for a given lower semicontinuous function using directional convexificators, presuming convexity and closedness
of the set of continuity directions (see [3], Cor. 2 and Prop. 1). Notice that directional convexificators are closed
sets which can be bounded and/or strictly included in convexificators (see Example 2.10). Using this new tool,
Gadhi [11] established mean value conditions in terms of directional convexificators and formulate variational
inequalities of Stampacchia and Minty type in terms of directional convexificators; he used these variational
inequalities as a tool to find out necessary and sufficient conditions for a point to be an optimal solution of an
inherent optimization problem. In [14], Gadhi et al. gave optimality conditions for a set valued optimization
problem using support functions of set valued mappings.

Motivated by the above work of Dempe and Pilecka [3], we investigate necessary and sufficient optimality
conditions for (MPEC) where data functions are not necessarily smooth/locally Lipschitz/convex/continuous.
Because the directional upper (semi-regular) convexificator of such a data function can be bounded while
the upper (semi-regular) convexificator is not, our results may be applicable in situations where other results
imposing local Lipschitzity or continuity are not (see Example 3.11). To achieve our goal, we introduce an
alternative stationarity concept and a generalized Abadie-type regularity condition using directional upper
(semi-regular) convexificator; and, assuming the feasible set is locally star-shaped, we show that alternative
stationarity is in fact a first-order necessary optimality condition for MPECs. Unlike Dempe and Pilecka [3]
and Gadhi et al. [14], we do not assume that the sets of all continuity directions are convex or compact. Under
some directional generalized convexities, we establish sufficient optimality conditions for (M PEC'). Notice that
directional upper semi-regular convexificators are not necessarily upper semi-regular convexificators; moreover,
they may not even be directional upper regular convexificators (see Example 2.11).

The outline of the paper is as follows: Section 2 describes the preliminary and basic definitions; Sections 3 and 4
establish the main results; and Section 5 provides a conclusion.

2. PRELIMINARIES

Throughout this section, let R™ be the usual n-dimensional Euclidean space. Given a nonempty subset S of
R™, the closure, convex hull, and convex cone (including the origin) generated by S are denoted respectively by
cl S, conv S and pos S. The negative polar cone of S is defined by

ST :={veR"]| (z,v) <0, Vz € S}.

Let x € ¢l S. The cone of feasible directions of S at x, the cone of weak feasible directions of S at x, and the
contingent cone of S at x are given by

F(S,z)={veR":36 >0, Ya € (0,6) such that x + av € S},

W(S,z) = {veR":3t, — 0" such that = +t,v € S, ¥n}

and
T(S,z) = {veR":3t, — 0", v, — v such that z + t,v, € S, Vn}.

Notice that, for all € ¢l S, we have
F(S,z) CW(S,z) CT(S, ). (1)

The regular (Fréchet) normal cone Ng (z) of S at x € S, following Definition 6.3 of [27], is defined by

Ns(x):{veR": lim sup <1}’y—$><0}.

y—z, yes, y2o Y — 2|~
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Observe that Ng (z) = T (S,x)”, see Theorem 6.28a of [27]. On the one hand, F(S, z) is not necessarily convex
or closed. On the other hand, T'(S,x) is closed but not necessarily convex. When S is convex, T (S,T) is also
convex and F (S, z) merges with W (S, z), and we have F(S,z) = W(S,x), T(S,z) = cl F(S,z) and

Ng(z)={2" e R": (z",y—x) <0, Vy € S}.

Definition 2.1. [6] A nonempty set S C R™ is said to be locally star-shaped at T € S, if there exists some
scalar a (Z,x) € (0, 1], corresponding to T and each z € S, such that

T+A(x—T) €S, forall A € (0,a(7T,x)).
If a (z,x) = 1 for each z € S, then S is said to be star-shaped at .

Open sets and convex sets, for instance, are locally star-shaped at each of their elements, whereas cones are
locally star-shaped at their origin. If S is closed and is locally star-shaped at each T € S, then S is convex [21].
However, there exist locally star-shaped sets (at some Z) that are neither star-shaped nor locally convex (at T).
For example,

S:RQ\{(x,y) ERQ:xQ:yandx;«éO}

is locally star-shaped at Z = (0,0) and is neither star-shaped nor locally convex at T [18].
The following result is due to Kabgani and Soleimani-damaneh; for more details see Theorem 3.1 of [18].

Proposition 2.2. [18] Assume that Q is locally star-shaped at T € Q. Then
T(Q,7) =c F(Q,T).

Remark 2.3. In case (2 is locally star-shaped at T € ), according to Proposition 2.2 together with inclusions
(1), we have
(Q,7) = W(Q,T).

Let f: R™ — RU {400} be a given function and let € R™ such that f(x) is finite. The expressions

f7(z,d) = liminf flattd) - /(@) and f*(x,d) = limsup flattd) - J(@)

t—0F t t——0t t

signify, respectively, the lower and upper Dini directional derivatives of f at z in the direction d. When f :
R™ — R is locally Lipschitz, both of the above derivatives exist finitely.

Definition 2.4. [5] The function f:R™ — RU {+oco} is said to have an upper convexifactor § # 9% f(x) C R"™
at x if 9“f(x) is closed and, for each d € R™,

f(z,d) < sup (2% d).
z* € f(x)

The function f: R"™ — RU{+o0} is said to have an upper semi-regular convexifactor ) # 9** f(z) C R™ at x if
0" f(x) is closed and, for each d € R™,

fH(e,d) < sup  (2*,d).
z*€ovs f(x)

Remark 2.5. The class of functions that admit an upper (semi-regular) convexifactor is extensive. Observe
that Gateaux differentiable functions and regular functions in the sense of Clarke [2] are members of this
class. Clarke subdifferentials of locally Lipschitz functions and tangential subdifferentials of tangentially convex
functions [23] are both upper (semi-regular) convexifactors.
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Remark 2.6. It is worth noting that the upper convexificator for a given function is not always unique. In
certain instances, it is possible to find an upper convexificator that is smaller than the most well-known subd-
ifferentials, such as those of Clarke [2], Michel-Penot [25], and Mordukhovich [24]. Demyanov and Jeyakumar’s
concept of minimal upper convexificator [4] appears promising for this purpose. In [16], Jeyakumar and Luc
presented conditions for unique minimal upper convexificators in terms of the set of extreme points [16].

We shall need the following definition.

Definition 2.7. [3] Consider f: R™ — RU {4o00}. A vector d € R" is a continuity direction of f at the point
x € R™ if for all sequences {t;} C R with {tx} \, 0 we have

Jim (o +tyd) = f(2).

The set of all continuity directions of f at  is denoted by D or Dy (x).
Note that the Fréchet normal cone to D at d = 0,, is given by Np (0,,) = T (D,0,,) .

Remark 2.8. The set D is a non-empty cone (it always contains 0,,) which is not necessarily closed or convex.
When D is convex, T(D,0,,) is also convex, and thus Np (0,,) =D~

Dempe and Pilecka introduced directional convexificators using the set of continuity directions. For more
details, see Definition 3 of [3].

Definition 2.9. [3] Let f: R™ — RU {400} be a given function.

— f admits a directional upper convexificator ) # 9% f (x) at x € R™ if the set 9% f (z) is closed and for each
d € D we have:
f7(z,d) < sup  (2",d).
z* €0} f(x)
— f admits a directional upper semi-regular convexificator ) # 9%° f (x) at = € R™ if the set 9%° f (x) is closed

and for each d € D we have:
(e, d) < sup  (2%,d). (2)
z* €IS f(x)

In the case where f is continuous at € R™, we have D = Dy () = R™ and the directional upper convexificator
(resp. directional upper semi-regular convexificator) coincides with the upper convexificator (resp. upper semi-
regular convexificator). If inequality (2) holds as equality for every d € D, then 0%’ f (x) is known as a directional
upper regular convexificator of f at x; for more details see Definition 3 of [3]. The following example shows that
a directional upper convexificator is not necessarily an upper convexificator.

Example 2.10. Consider the function
2x9 — 1 if 1 =0, zg >0,
Vo = (z1,29) €ER?*: f(z) =4 —3z1—1 if 1 <0, 29 =0,
|x1] — |z2] —2 elsewhere
at the point T = (0, 0).
— The set of all continuity directions

D =R?\ ({0} x (0,400) U (—00,0) x {0})

is neither closed nor convex. The normal cone to the set D equals Np (0,0) = {(0,0)}.
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— The function f admits 03 f (¥) = {(1,—1),(~1,1)} as a directional upper convexificator at Z. Notice that
this directional upper convexificator is not an upper convexificator of f at Z. Indeed, for d = (0, 1), we have

+oo=f"(z,d)>1= sup (z*d).
x* €0} f(T)

Observe that both 93 f (%) and 9% f (%) + Np (0,0) are compact sets.

Example 2.11 shows that a directional upper semi-regular convexificator is not necessarily an upper semi-
regular convexificator; further, it may not even be a directional upper regular convexificator.

Example 2.11. Consider the function f : R>—R defined by

o if x>0,
f(931>$2){ x%+1 if 1 < 0.

— The set of all continuity directions of f at T = (0,0) is D = RT x R.
- 0 f () = {(1,0)} is a directional upper semi-regular convexificator at Z. Indeed, 0%° f (%) is closed and for
each d = (d1,d2) € D, we have

ff@d=0<d = sup (2% d).
x*€0%° f(T)

e 01°f (T) is not an upper semi-regular convexificator of f at Z. Indeed, for d= (—1,0) € R?, we have

fr (f,g) =400>—-1= sup (z%d).
a* €0%° £(T)

e J% f(T) is not a directional upper regular convexificator of f at Z. Indeed, for d = (1,0) € D, we have

fr (T,E) =0#1= sup (z"d).
z*€0%° f(T)

The following lemma is of interest for our investigations.
Lemma 2.12. [13] Let B a nonempty, convex and compact set and A be a convex cone. If

sup (v,d) >0, foralld e A~
veB

then 0 € B+ clA.

3. NECESSARY OPTIMALITY CONDITIONS

Let © be the feasible set of (M PEC) defined by
Q= {xeR”:g(w) <0, h(z) =0, G(x) >0, H(z) >0, G(z) H () :O}.
Let 7 € Q and let
Ii={1, ...,om}, J:=={1, ..., p}, L:={1, ..., [} and I () :={i € ] : g; (T) = 0}
Consider the sets

A={iel:G;(x)=0, H;(Z) >0}, B:={ieL:G;(Z)=0, H;(T) =0},
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and
DZZ{iE£ZGi(E)>O, Hi(f):O}.

The set B is known as the degenerate set. If it is empty, the vector T is said to fulfill strict complementarity
[28] and we have £ = AU D. Throughout this section, we assume that B is a nonempty set. A partition of B
is of the form (Bj, Bs) where B = By U By and By N By = (). We denote the set of all partitions of B by P (B).
Now, we recall a nonlinear program MPEC (B, By) as given by Ye [28], with respect to a partition (By, Ba)
of B, given by

Minimize f (x)

. g(x) <0, h(x)=0,
MPEC(By, B2) : q ¢ ¢ Gi(z) >0, i€ By, H;(x) >0, j € Ba,
Gl(.%‘)zo,iEAUBQ, Hj(l‘)zo,jEDUBl

Notice that T € Q is a local optimal solution of M PEC if and only if it is a local optimal solution of
MPEC (By, Bs) for all (By, By) € P (B).
For the rest of the paper, we will make use of the following assumptions.

Assumption 3.1. The function f admits a compact directional upper semi-regular convezificator 0% f () at
T €.

Assumption 3.2. The functions g;,i € I (%), hj, j € J, G5, s € AUBs, and H;, T € DUBy, admit directional
upper convezificators 039, (T),1 € I (T), Oph; (T),j € J, 0pGs (T),s € AU By, and 0pH, (T), 7 € DU By.

Assumption 3.3. The functions (—h;),j € J, (—Gs),s € AU B, and (—H,),7 € DU B, admit directional
upper convezificators 0p (—h;) (T),j € J, 0% (—Gs) (%), s € AU B, and 03 (—H,) (%), 7 € DU B.

Here, D is the set of all continuity directions of the functions f, g;, ¢ € I (Z),h;, (—h;),j € J, G5, (—=Gs),s €
AUB, and H,, (—H;), 7€ DUB.

Now, assuming that all of the constraint functions have directional upper convexificators at =, we introduce
the following notations:

Tp(Q,7):=T(Q,7)ND, Wp(Q,Z):=W(Q,Z)ND and Z(Z) :=T (T) U Np (0,,),

where
'z := U conv 0pg; (T) | U (Uconv Oph; (a:)) U (Uconv 0p (—h;) (x))
iel(T) i€J ieJ
U ( U (conv 0BG (T) U conv 0% (—G;) (:v))) U ( U (conv 05 H; (T) U conv 0p (—H;) (m)))
i€AUB; i€DUB,
U ( U conv 0f (—Gy) (x)) U < U conv Op (—H;) (z)) .
i€By i€B;

Using the aforementioned notations and the concept of a directional upper convexificator, we can now state our
Abadie regularity condition.

Definition 3.4. Suppose that Assumptions 3.2 and 3.3 hold for some (B, By) € P (B). We say that the Abadie
regularity condition 9p — ARC (B1, B2) holds at T € Q if

{0} #E(T)” CTp (7).
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Remark 3.5. The preceding regularity condition extends a number ones addressed in the literature. Indeed, if
all the constraint functions are continuous, D = R" and dp — ARC (B, Bz) reduces to the generalized MPEC
Abadie constraint qualification given by Ardali et al. in Definition 3.2 of [1]. If in addition h = 0, G = 0, and
H =0, it merges with the Abadie constraint qualification (ACQ) presented by Li and Zhang in [22].

In the following definition, we introduce a generalized alternatively stationarity concept in terms of directional
upper convexifactors. For continuous functions, Definition 3.6 merges with Definition 4.3 of [1] and Definition 4.1
of [12] since in this case Np (0,,) = {0,} and D = R"™.

Definition 3.6. A feasible point T of M PEC is said to be a generalized alternatively stationary point if there
exists a vector (A9, A", u" XG AN p© ) € R™ x R?P x R?" x R? such that

m
conv O f (T) + YN conv 0%g; (T)

i=1
+ > pul conv O%h; (T) + YA conv 0% (—hi) (T)
icJ i€J

0€ l ! (3)
+3°AF conv 9% (—Gy) (F) + SSAH conv 9% (—H;) (T)
i=1 i=1
! !
+3u§ conv O%G; (T) + Y. uH conv 0% H; (T) + Np (0,,) -
L =1 i=1 i
with
N i (@) =0, Viel (4)
and

,u?zOorusz, Vi € B,
N =0, uf =0, Vie D,
M =0, uff =0, Vie A, (5)
AN e pl >0, vie L,
M >0, Viel, and Al >0, ul >0, Vie J.

Remark 3.7. Observe that if all function s are differentiable and the upper convexificator is replaced by the
upper regular convexifactor in the preceding stationary notion, then this concept reduces to the A-stationary
condition given by Flegel and Kanzow in [10] and by Flegel in [7].

Proposition 3.8. Let T be a local optimal solution of M PEC where Assumption 3.1 holds. Then,

sup  (n,v) >0, Yv € cl Wp(Q,T). (6)
n€oR f(T)

Proof. Let v € ¢l Wp(,Z) be arbitrary. Then, there exist vy € Wp(Q,T) such that vs — v as s — oo.
Consequently, vs € W(€,Z) N D and thus we can find a sequence t¢ — 0% such that T + t4vs € Q, Vg € N. For
g large enough, since T is a local optimal solution of f over Q, we have f (Z + t%v,) > f (Z). Then,

f (@ + tivs) = (T)
td

>0, for sufficiently large q.

Thus,

T4 t00,) — (T

i (7.0 = limsup LELE 2T (@) 5 ™)
q s

Using the upper semi-regularity of 0%° f (T) at T, since vs € D, we get

sup (n,vs) > 0.
neog (@)
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Since 0%’ f (Z) is compact and taking the limit as s — oo, we obtain
sup (n,v) >0.
neoy’ f(T)

Because v is arbitrarily chosen in ¢l Wp(Q,T), we can deduce the desired inquality (6). O

Theorem 3.9. Let T be a local optimal solution of MPEC'. Suppose that D # {0,}, that Q is locally star-shaped
at T and that Assumption 3.1 holds. If, in addition, Assumptions 3.2 and 3.3 are true for a partition (B, Bs)
of B such that Op — ARC (B, B3) holds at T and pos Z(T) is closed, then T is a generalized alternatively
stationary point.

Proof. Let T be a local optimal solution of M PEC. By Proposition 3.8, we have

sup (n,v) >0, Vv € cl Wp(Q,T).
nedy’ f(x)
Consequently,
sup (n,v)y >0, for all v € cl Wp(Q,T).
n€convd’ f(T)

Since € is locally star-shaped at T, we have Tp(Q,T) = ¢l Wp(2,T), and thus

sup
n€convd}® f(T)

(n,v) >0, for all v € Tp(, 7).

— Since 0p — ARC (By, B3) holds at T, we have

sup (n,v)y >0, for all v € Z(T)~
n€convd}® f(T)
Since = (T) C pos E (T), we get
sup  (n,v) >0, for all v € (pos Z (7))~
n€convd’ f(T)

— Since 0%’ f (%) is compact, conv 0% f () is also a compact set (see [15], Thm. 1.4.3). By Lemma 2.12, we
get

0 € conv 0’ f (T) + ¢l pos E(T) .

e Since pos E () is closed, we obtain

0 € conv 9%’ f (T) + pos T (T) + pos Np (0,) .

Since Np (0,,) is a convex cone, we get pos Np (0,,) = Np (0,). Then, there exist scalars Y > 0, i €
I@),puh >0, Nt >0, ieJ uf >0, i€ AUBy, \¢ >0,i€ AUB, uf >0, i € DU By, and
)\f{ >0, i € DU B, such that

0e

conv OF’

(@) + Y A conv 9%g; (T)

i€l (@)

+ 31l conv O%h; (T) + A conv 0% (—hi) (T)

icJ

1€ AUB>

i€ DUB;

+ 3 48 conv 045G (T)+ S A conv 9% (—Gy) (T)
+ X pH conv 05H; () + Y. AT conv 9% (—H;) (T) + Np (0,,) .

i€

i€AUB

i€eDUB
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e Setting
pé =0, vie DUB;
,uf{:0, Vie AU By
N =0,VieD
M =0, viecA

we obtain (3),(4) and (5). The proof is then finished.
([

Remark 3.10. The additional condition mentioned above, the closedness of pos Z(Z), has been previously
used by several authors in the continuous case (see [1,17] and [19]). Observe that if conv = (Z) is a polyhedral
set containing the origin, then pos Z (T) is a polyhedral convex cone Corollary 19.7.1 of [26] and, thus, closed.
Notice that pos Z(T) = pos conv Z (T).

The following example provides a case where Theorem 3.9 is applicable while both Theorem 4.4 of [20] and
Theorem 4.5 of [1] are not. Observe that in Example 3.11, the objective function f is not continuous; thus not
locally Lipschitz and consequently Theorem 4.4 of [20] and Theorem 4.5 of [1] cannot be used with this last
property imposed.

Example 3.11. Consider the following nonsmooth optimization problem:

Minimize f (x1,x2)
g(z1,72) <0, h(z1,22) ZQ,

(MPEC):q
o G(.’El,l'z) Z 0, H(l’l,xg) 2 0, G(.’El,l'z) H(.’El,.’Ez) = 0,

where g (z1,22) = |xa|, h (x1,229) =0, H (x1,x2) = 2

o X lf X2 Z 0
G (21,22) = { ro +1 elsewhere.
and
29 — 1 if 1 =0, z9 >0,
f (561,1‘2) = —3xr1 —1 if 1 <0, z9 =0,

|z1] — |z2] —2 elsewhere.

— On the one hand, since

Dy (7) = R*\ ({0} x (0, +00) U (=00,0) x {0}), Dy (7,7) = D (7.5) = D (7,5) =R xR

and
Dq (fvg) =R xR*
we have
D= (R X R+) \ ({0} x (0,400) U (—00,0) x {0}).
Consequently,

Np (02) = {0} x R™.
— On the other hand, Z = (0,0) is an optimal solution of (M PEC). Moreover, A = D = (), B = {1}, =
{1}, J={1},Q=R* x {0}, W (Q,T) = R* x {0} and Wp (Q,7) = R* x {0}.
e Op — ARC (By, Bs) holds at .
o O f () ={(1,-1),(—1,1)} is a compact directional upper semi-regular convexificator of f at Z.
o 0%g(T) = {(0,1)},0%h (T) = {(0,0)}, 9%G () = {(1,0)} and 9% H () = {(0,1)} are directional
upper convexificators of g, h, G and H at T.
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o For By = {1} and By = (), we have
I'(z) = {(0,1),(0,1),(0,-1),(-1,0)}.

Consequently,
= (T) = {(0, 1)7 (Oa 71)7 (7170)} U ({0} X Ri) .
Then,
=@ =R" x {0}.
Since Tp (Q,7) = RT x {0}, we deduce that {(0,0)} # = (z)” C Tp (Q,T).
e pos Z (T) is closed. Indeed,
pos Z2(T) =R™ x R.
- By ta}dng N =2 u¢ = %, Moo= ph =y =0, M = % and A\ = 1, since (O,f%) € Np (02) and

(3,—3%) € conv 0% f (T), we get

conv O f (T) + A9 conv 9% g (T)
+u conv 0%k (T) + A" conv 0% (—h) (T)
+AC conv 9% (—G) (T) + \H conv 0% (—H) ()
+p% conv 0%G (%) + pf conv 9% H (T) + Np (02) .

0e

Remark 3.12. It is clear that the smaller the directional upper (semi-regular) convexificator is, the more useful
the optimality conditions using this directional upper (semi-regular) convexificator are. Notice that our findings
are established independent of the directional upper (semi-regular) convexificators utilized. As a consequence,
the results in this work are valid for each directional upper (semi-regular) convexificator.

4. SUFFICIENT OPTIMALITY CONDITIONS

In order to get sufficient optimality conditions, we need the following notions.

Definition 4.1. Let f : R* — R and T € R™. We assume that f admits a directional upper (semi-regular)
convexificator 0% f () C R™ at .

— f is said to be 0f-convex at 7 iff for all € R™:
(& x—T) < f(x)— f(T),for all £ € conv % f (T) + Np (0,) .
— [ is said to be 0%-quasiconvex at 7 iff for all x € R™:
flx)—f(@) <0={,x—7T) <0, for all £ € conv I3 f (T) + Np (0,) .
— f is said to be 0%-pseudoconvex at 7 iff for all z € R™:
f@)—f@) <0={(,x—7) <0, for all £ € conv dpf (T)+ Np (0,) .
— f is said to be 0%-quasilinear at T iff f and (—f) are both 9}-quasiconvex at 7.
Let T € Q be a feasible point satisfying the generalized alternatively stationary condition and let
S:=BLUBLUB"UATUD"
where
Bf = {Z'EB:,uleoandufq>0},B+ = {ieB:piG>0and,uZH:0},
Bt = {z'EB:uiG>Oand,ufq>O},AJr ={i€A:puf >0} and D" :={ie D:p" >0}.
Here, & and pff are the multipliers associated to the point Z which satisfies the generalized alternatively
stationary condition.
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Theorem 4.2. Let T € Q be a feasible point for (M PEC) where the generalized alternatively stationary condi-
tion holds. Assume S is empty, f is 0% —pseudoconver at T, ¢;, i € I (T),—G;, 1 € AUB, —H;, i € DUB, are
0% -quasiconver at T and h;, i € J, is O%-quasilinear at T. Then T is a global optimal solution of (M PEC).

Proof. Suppose that T is not a global optimal solution of (MPEC'). Then, there exists o € 2 such that
f (@) > f(zo). Since f is 0%-pseudoconvex at T, we get

(&, zo —T) <0, for all £&* € conv I5f (T) + Np (0,,) . (8)
Using (3), we can find & € conv 0% f (T),(; € conv 059 (T),<i € conv Oh; (T), pi € conv 0F (—h;) (T),~} €
conv 0% (—G;) (T),v}* € conv 04 G, (T), 0 € conv 0% (—H;) (T), 0 € conv 9 H; (T) and 7* € Np (0,,) such
that l l l
0 —£+ZA" G+ i+ Nps +ZAG + ) MO+ ul ey ol 0
iceJ icJ i=1 i=1 i=1
Then,

m

0= (& o—2) + > N (G wo—T) + > _pf (i 70— 7T)

i=1 ieJ
! l
Y N pis 2o =)+ Y A (), w0 —T) + Y A0, w0 —7)
i€J =1 =1
! l
Y (0 w0 =)+ Yl (07, wo —T) + (1%, w0~ 7).
i=1 i=1
— Observing that
gi (x0) < g (@), i € I (T),
hi (zo) = h; () =0, i € J,
(—Gi) (m0) < (—Gy) (T), i € AUB,
(—H;) (z0) < (—H;)(T), i€ DUB,
we get
gi (%0)

e By the 0%-quasiconvexity of g;, i € I (), —G;, i € AUB, —H;, i€ DUB, at T, as 0 € Np (0,,), we

obtain
C“ xo—T) <0, foralli € I (Z),
%7900—58 <O 1€ AU B,

,To — ) <0, 1€ DUB.
Then,

<Zg, 0—x><0

i€1(T)

Z AGrr, 0—x><Oand < Z )\flef,xo—x>§0.

i€ AUB i€DUB

o By (5), we have \{' =0 for all i € D, and AT = 0, for all i € A. Consequently,

l
<ZA?7;‘,:1:0 - x> <0 (9)

i=1
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and l
<ZA?9;,:CO — x> <0. (10)
=1

o By (4), we have \Y = 0 for all ¢ ¢ I (z). Consequently,

i=1

e By the 0}-quasilinearity of h;, i € J, at 7, as 0 € Np (0,,), we get

<Z)\§gi,x0 —x> <0, forallieJ (12)

icJ

and

<Zpi,x0 —x> <0, for allie J (13)

icJ
e From the emptiness of S, we deduce that u$ =0 and uff =0, for all 4 € £. Then,

l l
S oud s wo =3+ Y _plt (057, w0 —T) =0. (14)

i=1 i=1

— Summing (9) — (14), we obtain

0> <Z>\f§i>$o —93> + <ZM?%,!E0 —!E> + <Z)\?<i,0i,9€o —CU>
=1 ieJ ieJ
1 !
+<ZA?vz‘,xo —x> + <Z>\{Ie;‘k7$0 —x>
=1 =1

1= (3

l I
+Zlu? (vi*, @0 —T) + ZIMZH (07, w0 — ) ;
1= i=

which implies
0<{+T, x0—T). (15)

Since £ € conv 0% f (T) and 7* € Np (0,,), Inequality (15) contradicts (8).

5. CONCLUSION

This work was about a nonsmooth mathematical program with equilibrium constraints (M PEC) in which the
functions are not always locally Lipschitz or continuous. Using directional upper convexificators and directional
upper semi-regular convexificators, we introduced an alternative stationarity concept. Under an appropriate
Abadie regularity condition, given in terms of directional upper convexificators, we established that alternative
stationarity is a first-order necessary optimality condition. Unlike Dempe and Pilecka (Journal of Global Opti-
mization 61: 769-788, 2015), we reach our goal without resorting to convexificators; the reason is that we do not
assume that the sets of all continuity directions are convex or closed. The obtained results are given in terms
of directional upper convexificators and directional upper semi-regular convexificators. In order to get sufficient
optimality conditions, we made use of Jp-pseudoconvexity and 0%-quasiconvexity on the functions.
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