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OPTIMALITY CONDITIONS FOR MPECS IN TERMS OF DIRECTIONAL
UPPER CONVEXIFACTORS

Nazih Abderrazzak Gadhi and Mohamed Ohda*

Abstract. In this paper, we investigate necessary and sufficient optimality conditions for mathe-
matical programs with equilibrium constraints. For this goal, we introduce an appropriate type of
MPEC regularity condition and a stationary concept given in terms of directional upper convexifica-
tors and directional upper semi-regular convexificators. The appearing functions are not necessarily
smooth/locally Lipschitz/convex/continuous, and the continuity directions’ sets are not assumed to be
compact or convex. Finally, notions of directional pseudoconvexity and directional quasiconvexity are
used to establish sufficient optimality conditions for MPECs.
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1. Introduction

In this paper, we investigate the following mathematical program with equilibrium constraints:

(𝑀𝑃𝐸𝐶) :

⎧⎨⎩
Minimize 𝑓 (𝑥)

s.t.
{︂

𝑔 (𝑥) ≤ 0, ℎ (𝑥) = 0,

𝐺 (𝑥) ≥ 0, 𝐻 (𝑥) ≥ 0, 𝐺 (𝑥)⊤𝐻 (𝑥) = 0,

where 𝑓 : R𝑛 → R, 𝑔 : R𝑛 → R𝑚, ℎ : R𝑛 → R𝑝, 𝐺 : R𝑛 → R𝑙 and 𝐻 : R𝑛 → R𝑙 are lower semicontinuous
functions; 𝑛, 𝑚, 𝑝, 𝑙 ∈ N.

Such a problem has been discussed by several authors at various levels of generality [1, 7–10, 20, 28]. In [8],
Flegel and Kanzow presented a straightforward and elementary approach to first-order optimality conditions
for the MPECs and showed that Fritz-John approach leads to a new optimality condition under a Mangasarian-
Fromovitz-type assumption. In [9], the authors introduced a new Abadie-type constraint qualification for the
MPECs and showed it to be weaker than any of the existing ones. In [1], Ardali et al. defined nonsmooth
stationary conditions based on the convexificators and showed that generalized strong stationary is the first-
order optimality condition under a generalized standard Abadie constraint qualification.

The notion of convexificator can be seen as a generalization of the idea of subdifferential. For a locally Lipschitz
function, most known subdifferentials are convexificators and these subdifferentials may contain the convex hull
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of a convexificator [16]. Noting that convexificators admitted by discontinuous functions may be unbounded
and because the boundedness of convexificators is of crucial importance in many well-known results, Dempe
and Pilecka [3] developed the concept of directional convexificators. They were able to create a convexificator
for a given lower semicontinuous function using directional convexificators, presuming convexity and closedness
of the set of continuity directions (see [3], Cor. 2 and Prop. 1). Notice that directional convexificators are closed
sets which can be bounded and/or strictly included in convexificators (see Example 2.10). Using this new tool,
Gadhi [11] established mean value conditions in terms of directional convexificators and formulate variational
inequalities of Stampacchia and Minty type in terms of directional convexificators; he used these variational
inequalities as a tool to find out necessary and sufficient conditions for a point to be an optimal solution of an
inherent optimization problem. In [14], Gadhi et al. gave optimality conditions for a set valued optimization
problem using support functions of set valued mappings.

Motivated by the above work of Dempe and Pilecka [3], we investigate necessary and sufficient optimality
conditions for (MPEC) where data functions are not necessarily smooth/locally Lipschitz/convex/continuous.
Because the directional upper (semi-regular) convexificator of such a data function can be bounded while
the upper (semi-regular) convexificator is not, our results may be applicable in situations where other results
imposing local Lipschitzity or continuity are not (see Example 3.11). To achieve our goal, we introduce an
alternative stationarity concept and a generalized Abadie-type regularity condition using directional upper
(semi-regular) convexificator; and, assuming the feasible set is locally star-shaped, we show that alternative
stationarity is in fact a first-order necessary optimality condition for MPECs. Unlike Dempe and Pilecka [3]
and Gadhi et al. [14], we do not assume that the sets of all continuity directions are convex or compact. Under
some directional generalized convexities, we establish sufficient optimality conditions for (𝑀𝑃𝐸𝐶). Notice that
directional upper semi-regular convexificators are not necessarily upper semi-regular convexificators; moreover,
they may not even be directional upper regular convexificators (see Example 2.11).
The outline of the paper is as follows: Section 2 describes the preliminary and basic definitions; Sections 3 and 4
establish the main results; and Section 5 provides a conclusion.

2. Preliminaries

Throughout this section, let R𝑛 be the usual 𝑛-dimensional Euclidean space. Given a nonempty subset 𝑆 of
R𝑛, the closure, convex hull, and convex cone (including the origin) generated by 𝑆 are denoted respectively by
𝑐𝑙 𝑆, 𝑐𝑜𝑛𝑣 𝑆 and 𝑝𝑜𝑠 𝑆. The negative polar cone of 𝑆 is defined by

𝑆− := {𝑣 ∈ R𝑛 | ⟨𝑥, 𝑣⟩ ≤ 0, ∀𝑥 ∈ 𝑆} .

Let 𝑥 ∈ 𝑐𝑙 𝑆. The cone of feasible directions of 𝑆 at 𝑥, the cone of weak feasible directions of 𝑆 at 𝑥, and the
contingent cone of 𝑆 at 𝑥 are given by

ℱ(𝑆, 𝑥) = {𝑣 ∈ R𝑛 : ∃𝛿 > 0, ∀𝛼 ∈ (0, 𝛿) such that 𝑥 + 𝛼𝑣 ∈ 𝑆},

𝑊 (𝑆, 𝑥) = {𝑣 ∈ R𝑛 : ∃𝑡𝑛 → 0+ such that 𝑥 + 𝑡𝑛𝑣 ∈ 𝑆, ∀𝑛}

and
𝑇 (𝑆, 𝑥) = {𝑣 ∈ R𝑛 : ∃𝑡𝑛 → 0+, ∃𝑣𝑛 → 𝑣 such that 𝑥 + 𝑡𝑛𝑣𝑛 ∈ 𝑆, ∀𝑛}.

Notice that, for all 𝑥 ∈ 𝑐𝑙 𝑆, we have

ℱ(𝑆, 𝑥) ⊆ 𝑊 (𝑆, 𝑥) ⊆ 𝑇 (𝑆, 𝑥). (1)

The regular (Fréchet) normal cone 𝑁𝑆 (𝑥) of 𝑆 at 𝑥 ∈ 𝑆, following Definition 6.3 of [27], is defined by

𝑁𝑆 (𝑥) =

{︃
𝑣 ∈ R𝑛 : lim sup

𝑦 ↦−→𝑥, 𝑦∈𝑆, 𝑦 ̸=𝑥

⟨𝑣, 𝑦 − 𝑥⟩
‖𝑦 − 𝑥‖

≤ 0

}︃
.
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Observe that 𝑁𝑆 (𝑥) = 𝑇 (𝑆, 𝑥)−, see Theorem 6.28a of [27]. On the one hand, ℱ(𝑆, 𝑥) is not necessarily convex
or closed. On the other hand, 𝑇 (𝑆, 𝑥) is closed but not necessarily convex. When 𝑆 is convex, 𝑇 (𝑆, 𝑥) is also
convex and ℱ(𝑆, 𝑥) merges with 𝑊 (𝑆, 𝑥), and we have ℱ(𝑆, 𝑥) = 𝑊 (𝑆, 𝑥), 𝑇 (𝑆, 𝑥) = 𝑐𝑙 ℱ(𝑆, 𝑥) and

𝑁𝑆 (𝑥) = {𝑥* ∈ R𝑛 : ⟨𝑥*, 𝑦 − 𝑥⟩ ≤ 0, ∀𝑦 ∈ 𝑆} .

Definition 2.1. [6] A nonempty set 𝑆 ⊆ R𝑛 is said to be locally star-shaped at 𝑥 ∈ 𝑆, if there exists some
scalar 𝑎 (𝑥, 𝑥) ∈ (0, 1], corresponding to 𝑥 and each 𝑥 ∈ 𝑆, such that

𝑥 + 𝜆 (𝑥− 𝑥) ∈ 𝑆, for all 𝜆 ∈ (0, 𝑎 (𝑥, 𝑥)) .

If 𝑎 (𝑥, 𝑥) = 1 for each 𝑥 ∈ 𝑆, then 𝑆 is said to be star-shaped at 𝑥.

Open sets and convex sets, for instance, are locally star-shaped at each of their elements, whereas cones are
locally star-shaped at their origin. If 𝑆 is closed and is locally star-shaped at each 𝑥 ∈ 𝑆, then 𝑆 is convex [21].
However, there exist locally star-shaped sets (at some 𝑥) that are neither star-shaped nor locally convex (at 𝑥).
For example,

𝑆 = R2∖
{︀

(𝑥, 𝑦) ∈ R2 : 𝑥2 = 𝑦 and 𝑥 ̸= 0
}︀

is locally star-shaped at 𝑥 = (0, 0) and is neither star-shaped nor locally convex at 𝑥 [18].
The following result is due to Kabgani and Soleimani-damaneh; for more details see Theorem 3.1 of [18].

Proposition 2.2. [18] Assume that Ω is locally star-shaped at 𝑥 ∈ Ω. Then

𝑇 (Ω, 𝑥) = 𝑐𝑙 ℱ(Ω, 𝑥).

Remark 2.3. In case Ω is locally star-shaped at 𝑥 ∈ Ω, according to Proposition 2.2 together with inclusions
(1), we have

(Ω, 𝑥) = 𝑐𝑙 𝑊 (Ω, 𝑥).

Let 𝑓 : R𝑛 → R ∪ {+∞} be a given function and let 𝑥 ∈ R𝑛 such that 𝑓(𝑥) is finite. The expressions

𝑓−(𝑥, 𝑑) = lim inf
𝑡↦−→0+

𝑓(𝑥 + 𝑡𝑑)− 𝑓(𝑥)
𝑡

and 𝑓+(𝑥, 𝑑) = lim sup
𝑡↦−→0+

𝑓(𝑥 + 𝑡𝑑)− 𝑓(𝑥)
𝑡

signify, respectively, the lower and upper Dini directional derivatives of 𝑓 at 𝑥 in the direction 𝑑. When 𝑓 :
R𝑛 → R is locally Lipschitz, both of the above derivatives exist finitely.

Definition 2.4. [5] The function 𝑓 : R𝑛 → R∪ {+∞} is said to have an upper convexifactor ∅ ≠ 𝜕𝑢𝑓(𝑥) ⊆ R𝑛

at 𝑥 if 𝜕𝑢𝑓(𝑥) is closed and, for each 𝑑 ∈ R𝑛,

𝑓−(𝑥, 𝑑) ≤ sup
𝑥*∈𝜕𝑢𝑓(𝑥)

⟨𝑥*, 𝑑⟩.

The function 𝑓 : R𝑛 → R∪ {+∞} is said to have an upper semi-regular convexifactor ∅ ≠ 𝜕𝑢𝑠𝑓(𝑥) ⊆ R𝑛 at 𝑥 if
𝜕𝑢𝑠𝑓(𝑥) is closed and, for each 𝑑 ∈ R𝑛,

𝑓+(𝑥, 𝑑) ≤ sup
𝑥*∈𝜕𝑢𝑠𝑓(𝑥)

⟨𝑥*, 𝑑⟩.

Remark 2.5. The class of functions that admit an upper (semi-regular) convexifactor is extensive. Observe
that Gâteaux differentiable functions and regular functions in the sense of Clarke [2] are members of this
class. Clarke subdifferentials of locally Lipschitz functions and tangential subdifferentials of tangentially convex
functions [23] are both upper (semi-regular) convexifactors.
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Remark 2.6. It is worth noting that the upper convexificator for a given function is not always unique. In
certain instances, it is possible to find an upper convexificator that is smaller than the most well-known subd-
ifferentials, such as those of Clarke [2], Michel-Penot [25], and Mordukhovich [24]. Demyanov and Jeyakumar’s
concept of minimal upper convexificator [4] appears promising for this purpose. In [16], Jeyakumar and Luc
presented conditions for unique minimal upper convexificators in terms of the set of extreme points [16].

We shall need the following definition.

Definition 2.7. [3] Consider 𝑓 : R𝑛 → R ∪ {+∞}. A vector 𝑑 ∈ R𝑛 is a continuity direction of 𝑓 at the point
𝑥 ∈ R𝑛 if for all sequences {𝑡𝑘} ⊂ R with {𝑡𝑘} ↘ 0 we have

lim
𝑘 ↦−→∞

𝑓 (𝑥 + 𝑡𝑘𝑑) = 𝑓 (𝑥) .

The set of all continuity directions of 𝑓 at 𝑥 is denoted by 𝒟 or 𝒟𝑓 (𝑥).

Note that the Fréchet normal cone to 𝒟 at 𝑑 = 0𝑛 is given by 𝑁𝒟 (0𝑛) = 𝑇 (𝒟, 0𝑛)−.

Remark 2.8. The set 𝒟 is a non-empty cone (it always contains 0𝑛) which is not necessarily closed or convex.
When 𝒟 is convex, 𝑇 (𝒟, 0𝑛) is also convex, and thus 𝑁𝒟 (0𝑛) = 𝒟−.

Dempe and Pilecka introduced directional convexificators using the set of continuity directions. For more
details, see Definition 3 of [3].

Definition 2.9. [3] Let 𝑓 : R𝑛 → R ∪ {+∞} be a given function.

– 𝑓 admits a directional upper convexificator ∅ ̸= 𝜕𝑢
𝒟𝑓 (𝑥) at 𝑥 ∈ R𝑛 if the set 𝜕𝑢

𝒟𝑓 (𝑥) is closed and for each
𝑑 ∈ 𝒟 we have:

𝑓− (𝑥, 𝑑) ≤ sup
𝑥*∈𝜕𝑢

𝒟𝑓(𝑥)

⟨𝑥*, 𝑑⟩.

– 𝑓 admits a directional upper semi-regular convexificator ∅ ≠ 𝜕𝑢𝑠
𝒟 𝑓 (𝑥) at 𝑥 ∈ R𝑛 if the set 𝜕𝑢𝑠

𝒟 𝑓 (𝑥) is closed
and for each 𝑑 ∈ 𝒟 we have:

𝑓+ (𝑥, 𝑑) ≤ sup
𝑥*∈𝜕𝑢𝑠

𝒟 𝑓(𝑥)

⟨𝑥*, 𝑑⟩. (2)

In the case where 𝑓 is continuous at 𝑥 ∈ R𝑛, we have𝒟 = 𝒟𝑓 (𝑥) = R𝑛 and the directional upper convexificator
(resp. directional upper semi-regular convexificator) coincides with the upper convexificator (resp. upper semi-
regular convexificator). If inequality (2) holds as equality for every 𝑑 ∈ 𝒟, then 𝜕𝑢𝑠

𝒟 𝑓 (𝑥) is known as a directional
upper regular convexificator of 𝑓 at 𝑥; for more details see Definition 3 of [3]. The following example shows that
a directional upper convexificator is not necessarily an upper convexificator.

Example 2.10. Consider the function

∀𝑥 = (𝑥1, 𝑥2) ∈ R2 : 𝑓 (𝑥) =

⎧⎨⎩ 2𝑥2 − 1 if 𝑥1 = 0, 𝑥2 > 0,
−3𝑥1 − 1 if 𝑥1 < 0, 𝑥2 = 0,
|𝑥1| − |𝑥2| − 2 elsewhere

at the point 𝑥 = (0, 0).

– The set of all continuity directions

𝒟 = R2 ∖ ({0} × (0, +∞) ∪ (−∞, 0)× {0})

is neither closed nor convex. The normal cone to the set 𝒟 equals 𝑁𝒟 (0, 0) = {(0, 0)}.
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– The function 𝑓 admits 𝜕𝑢
𝒟𝑓 (𝑥) = {(1,−1), (−1, 1)} as a directional upper convexificator at 𝑥. Notice that

this directional upper convexificator is not an upper convexificator of 𝑓 at 𝑥. Indeed, for 𝑑 = (0, 1), we have

+∞ = 𝑓−
(︀
𝑥, 𝑑
)︀

> 1 = sup
𝑥*∈𝜕𝑢

𝒟𝑓(𝑥)

⟨𝑥*,𝑑⟩.

Observe that both 𝜕𝑢
𝒟𝑓 (𝑥) and 𝜕𝑢

𝒟𝑓 (𝑥) + 𝑁𝒟 (0, 0) are compact sets.

Example 2.11 shows that a directional upper semi-regular convexificator is not necessarily an upper semi-
regular convexificator; further, it may not even be a directional upper regular convexificator.

Example 2.11. Consider the function 𝑓 : R2→R defined by

𝑓 (𝑥1, 𝑥2) =
{︂

0 if 𝑥1 ≥ 0,
𝑥2

2 + 1 if 𝑥1 < 0.

– The set of all continuity directions of 𝑓 at 𝑥 = (0, 0) is 𝒟 = R+ × R.
– 𝜕𝑢𝑠

𝒟 𝑓 (𝑥) = {(1, 0)} is a directional upper semi-regular convexificator at 𝑥. Indeed, 𝜕𝑢𝑠
𝒟 𝑓 (𝑥) is closed and for

each 𝑑 = (𝑑1, 𝑑2) ∈ 𝒟, we have

𝑓+ (𝑥, 𝑑) = 0 ≤ 𝑑1 = sup
𝑥*∈𝜕𝑢𝑠

𝒟 𝑓(𝑥)

⟨𝑥*, 𝑑⟩.

∙ 𝜕𝑢𝑠
𝒟 𝑓 (𝑥) is not an upper semi-regular convexificator of 𝑓 at 𝑥. Indeed, for ̃︀𝑑 = (−1, 0) ∈ R2, we have

𝑓+
(︁
𝑥, ̃︀𝑑)︁ = +∞ > −1 = sup

𝑥*∈𝜕𝑢𝑠
𝒟 𝑓(𝑥)

⟨𝑥*, ̃︀𝑑⟩.
∙ 𝜕𝑢𝑠

𝒟 𝑓 (𝑥) is not a directional upper regular convexificator of 𝑓 at 𝑥. Indeed, for 𝑑 = (1, 0) ∈ 𝒟, we have

𝑓+
(︀
𝑥, 𝑑
)︀

= 0 ̸= 1 = sup
𝑥*∈𝜕𝑢𝑠

𝒟 𝑓(𝑥)

⟨𝑥*,𝑑⟩.

The following lemma is of interest for our investigations.

Lemma 2.12. [13] Let ℬ a nonempty, convex and compact set and 𝒜 be a convex cone. If

sup
𝑣∈ℬ

⟨𝑣, 𝑑⟩ ≥ 0, for all 𝑑 ∈ 𝒜−

then 0 ∈ ℬ + 𝑐𝑙𝒜.

3. Necessary optimality conditions

Let Ω be the feasible set of (𝑀𝑃𝐸𝐶) defined by

Ω :=
{︁

𝑥 ∈ R𝑛 : 𝑔 (𝑥) ≤ 0, ℎ (𝑥) = 0, 𝐺 (𝑥) ≥ 0, 𝐻 (𝑥) ≥ 0, 𝐺 (𝑥)𝑡
𝐻 (𝑥) = 0

}︁
.

Let 𝑥 ∈ Ω and let

𝐼 := {1, . . . , 𝑚} , 𝐽 := {1, . . . , 𝑝} , ℒ := {1, . . . , 𝑙} and 𝐼 (𝑥) := {𝑖 ∈ 𝐼 : 𝑔𝑖 (𝑥) = 0} .

Consider the sets

𝐴 := {𝑖 ∈ ℒ : 𝐺𝑖 (𝑥) = 0, 𝐻𝑖 (𝑥) > 0} , 𝐵 := {𝑖 ∈ ℒ : 𝐺𝑖 (𝑥) = 0, 𝐻𝑖 (𝑥) = 0} ,
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and
𝐷 := {𝑖 ∈ ℒ : 𝐺𝑖 (𝑥) > 0, 𝐻𝑖 (𝑥) = 0} .

The set 𝐵 is known as the degenerate set. If it is empty, the vector 𝑥 is said to fulfill strict complementarity
[28] and we have ℒ = 𝐴 ∪𝐷. Throughout this section, we assume that 𝐵 is a nonempty set. A partition of 𝐵
is of the form (𝐵1, 𝐵2) where 𝐵 = 𝐵1 ∪𝐵2 and 𝐵1 ∩𝐵2 = ∅. We denote the set of all partitions of 𝐵 by 𝑃 (𝐵).
Now, we recall a nonlinear program 𝑀𝑃𝐸𝐶 (𝐵1, 𝐵2) as given by Ye [28], with respect to a partition (𝐵1, 𝐵2)
of 𝐵, given by

𝑀𝑃𝐸𝐶 (𝐵1, 𝐵2) :

⎧⎪⎪⎨⎪⎪⎩
Minimize 𝑓 (𝑥)

s.t.

⎧⎨⎩ 𝑔 (𝑥) ≤ 0, ℎ (𝑥) = 0,
𝐺𝑖 (𝑥) ≥ 0, 𝑖 ∈ 𝐵1, 𝐻𝑗 (𝑥) ≥ 0, 𝑗 ∈ 𝐵2,

𝐺𝑖 (𝑥) = 0, 𝑖 ∈ 𝐴 ∪𝐵2, 𝐻𝑗 (𝑥) = 0, 𝑗 ∈ 𝐷 ∪𝐵1.

Notice that 𝑥 ∈ Ω is a local optimal solution of 𝑀𝑃𝐸𝐶 if and only if it is a local optimal solution of
𝑀𝑃𝐸𝐶 (𝐵1, 𝐵2) for all (𝐵1, 𝐵2) ∈ 𝑃 (𝐵).

For the rest of the paper, we will make use of the following assumptions.

Assumption 3.1. The function 𝑓 admits a compact directional upper semi-regular convexificator 𝜕𝑢𝑠
𝒟 𝑓 (𝑥) at

𝑥 ∈ Ω.

Assumption 3.2. The functions 𝑔𝑖, 𝑖 ∈ 𝐼 (𝑥), ℎ𝑗 , 𝑗 ∈ 𝐽 , 𝐺𝑠, 𝑠 ∈ 𝐴∪𝐵2, and 𝐻𝜏 , 𝜏 ∈ 𝐷∪𝐵1, admit directional
upper convexificators 𝜕𝑢

𝒟𝑔𝑖 (𝑥), 𝑖 ∈ 𝐼 (𝑥), 𝜕𝑢
𝒟ℎ𝑗 (𝑥), 𝑗 ∈ 𝐽 , 𝜕𝑢

𝒟𝐺𝑠 (𝑥), 𝑠 ∈ 𝐴 ∪𝐵2, and 𝜕𝑢
𝒟𝐻𝜏 (𝑥), 𝜏 ∈ 𝐷 ∪𝐵1.

Assumption 3.3. The functions (−ℎ𝑗), 𝑗 ∈ 𝐽 , (−𝐺𝑠), 𝑠 ∈ 𝐴 ∪ 𝐵, and (−𝐻𝜏 ), 𝜏 ∈ 𝐷 ∪ 𝐵, admit directional
upper convexificators 𝜕𝑢

𝒟 (−ℎ𝑗) (𝑥), 𝑗 ∈ 𝐽 , 𝜕𝑢
𝒟 (−𝐺𝑠) (𝑥), 𝑠 ∈ 𝐴 ∪𝐵, and 𝜕𝑢

𝒟 (−𝐻𝜏 ) (𝑥), 𝜏 ∈ 𝐷 ∪𝐵.

Here, 𝒟 is the set of all continuity directions of the functions 𝑓, 𝑔𝑖, 𝑖 ∈ 𝐼 (𝑥), ℎ𝑗 , (−ℎ𝑗), 𝑗 ∈ 𝐽, 𝐺𝑠, (−𝐺𝑠), 𝑠 ∈
𝐴 ∪𝐵, and 𝐻𝜏 , (−𝐻𝜏 ), 𝜏 ∈ 𝐷 ∪𝐵.

Now, assuming that all of the constraint functions have directional upper convexificators at 𝑥, we introduce
the following notations:

𝑇𝒟(Ω, 𝑥) := 𝑇 (Ω, 𝑥) ∩ 𝒟, 𝑊𝒟(Ω, 𝑥) := 𝑊 (Ω, 𝑥) ∩ 𝒟 and Ξ (𝑥) := Γ (𝑥) ∪𝑁𝒟 (0𝑛) ,

where

Γ (𝑥) : =

⎛⎝ ⋃︁
𝑖∈𝐼(𝑥)

𝑐𝑜𝑛𝑣 𝜕𝑢
𝒟𝑔𝑖 (𝑥)

⎞⎠ ∪

(︃⋃︁
𝑖∈𝐽

𝑐𝑜𝑛𝑣 𝜕𝑢
𝒟ℎ𝑖 (𝑥)

)︃
∪

(︃⋃︁
𝑖∈𝐽

𝑐𝑜𝑛𝑣 𝜕𝑢
𝒟 (−ℎ𝑖) (𝑥)

)︃

∪

(︃ ⋃︁
𝑖∈𝐴∪𝐵2

(𝑐𝑜𝑛𝑣 𝜕𝑢
𝒟𝐺𝑖 (𝑥) ∪ 𝑐𝑜𝑛𝑣 𝜕𝑢

𝒟 (−𝐺𝑖) (𝑥))

)︃
∪

(︃ ⋃︁
𝑖∈𝐷∪𝐵1

(𝑐𝑜𝑛𝑣 𝜕𝑢
𝒟𝐻𝑖 (𝑥) ∪ 𝑐𝑜𝑛𝑣 𝜕𝑢

𝒟 (−𝐻𝑖) (𝑥))

)︃

∪

(︃ ⋃︁
𝑖∈𝐵1

𝑐𝑜𝑛𝑣 𝜕𝑢
𝒟 (−𝐺𝑖) (𝑥)

)︃
∪

(︃ ⋃︁
𝑖∈𝐵2

𝑐𝑜𝑛𝑣 𝜕𝑢
𝒟 (−𝐻𝑖) (𝑥)

)︃
.

Using the aforementioned notations and the concept of a directional upper convexificator, we can now state our
Abadie regularity condition.

Definition 3.4. Suppose that Assumptions 3.2 and 3.3 hold for some (𝐵1, 𝐵2) ∈ 𝑃 (𝐵). We say that the Abadie
regularity condition 𝜕𝒟 −𝐴𝑅𝐶 (𝐵1, 𝐵2) holds at 𝑥 ∈ Ω if

{0𝑛} ≠ Ξ (𝑥)− ⊆ 𝑇𝒟 (Ω, 𝑥) .
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Remark 3.5. The preceding regularity condition extends a number ones addressed in the literature. Indeed, if
all the constraint functions are continuous, 𝒟 = R𝑛 and 𝜕𝒟 −𝐴𝑅𝐶 (𝐵1, 𝐵2) reduces to the generalized MPEC
Abadie constraint qualification given by Ardali et al. in Definition 3.2 of [1]. If in addition ℎ ≡ 0, 𝐺 ≡ 0, and
𝐻 ≡ 0, it merges with the Abadie constraint qualification (𝐴𝐶𝑄) presented by Li and Zhang in [22].

In the following definition, we introduce a generalized alternatively stationarity concept in terms of directional
upper convexifactors. For continuous functions, Definition 3.6 merges with Definition 4.3 of [1] and Definition 4.1
of [12] since in this case 𝑁𝒟 (0𝑛) = {0𝑛} and 𝒟 = R𝑛.

Definition 3.6. A feasible point 𝑥 of 𝑀𝑃𝐸𝐶 is said to be a generalized alternatively stationary point if there
exists a vector

(︀
𝜆𝑔, 𝜆ℎ, 𝜇ℎ, 𝜆𝐺, 𝜆𝐻 , 𝜇𝐺, 𝜇𝐻

)︀
∈ R𝑚 × R2𝑝 × R2𝑙 × R2𝑙 such that

0 ∈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐𝑜𝑛𝑣 𝜕𝑢𝑠
𝒟 𝑓 (𝑥) +

𝑚∑︀
𝑖=1

𝜆𝑔
𝑖 𝑐𝑜𝑛𝑣 𝜕𝑢

𝒟𝑔𝑖 (𝑥)

+
∑︀
𝑖∈𝐽

𝜇ℎ
𝑖 𝑐𝑜𝑛𝑣 𝜕𝑢

𝒟ℎ𝑖 (𝑥) +
∑︀
𝑖∈𝐽

𝜆ℎ
𝑖 𝑐𝑜𝑛𝑣 𝜕𝑢

𝒟 (−ℎ𝑖) (𝑥)

+
𝑙∑︀

𝑖=1

𝜆𝐺
𝑖 𝑐𝑜𝑛𝑣 𝜕𝑢

𝒟 (−𝐺𝑖) (𝑥) +
𝑙∑︀

𝑖=1

𝜆𝐻
𝑖 𝑐𝑜𝑛𝑣 𝜕𝑢

𝒟 (−𝐻𝑖) (𝑥)

+
𝑙∑︀

𝑖=1

𝜇𝐺
𝑖 𝑐𝑜𝑛𝑣 𝜕𝑢

𝒟𝐺𝑖 (𝑥) +
𝑙∑︀

𝑖=1

𝜇𝐻
𝑖 𝑐𝑜𝑛𝑣 𝜕𝑢

𝒟𝐻𝑖 (𝑥) + 𝑁𝒟 (0𝑛) .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3)

with
𝜆𝑔

𝑖 𝑔𝑖 (𝑥) = 0, ∀𝑖 ∈ 𝐼 (4)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜇𝐺

𝑖 = 0 or 𝜇𝐻
𝑖 = 0, ∀𝑖 ∈ 𝐵,

𝜆𝐺
𝑖 = 0, 𝜇𝐺

𝑖 = 0, ∀𝑖 ∈ 𝐷,
𝜆𝐻

𝑖 = 0, 𝜇𝐻
𝑖 = 0, ∀𝑖 ∈ 𝐴,

𝜆𝐺
𝑖 , 𝜆𝐻

𝑖 , 𝜇𝐺
𝑖 , 𝜇𝐻

𝑖 ≥ 0, ∀𝑖 ∈ ℒ,
𝜆𝑔

𝑖 ≥ 0, ∀𝑖 ∈ 𝐼, and 𝜆ℎ
𝑖 ≥ 0, 𝜇ℎ

𝑖 ≥ 0, ∀𝑖 ∈ 𝐽.

(5)

Remark 3.7. Observe that if all function s are differentiable and the upper convexificator is replaced by the
upper regular convexifactor in the preceding stationary notion, then this concept reduces to the A-stationary
condition given by Flegel and Kanzow in [10] and by Flegel in [7].

Proposition 3.8. Let 𝑥 be a local optimal solution of 𝑀𝑃𝐸𝐶 where Assumption 3.1 holds. Then,

sup
𝜂∈𝜕𝑢𝑠

𝒟 𝑓(𝑥)

⟨𝜂, 𝑣⟩ ≥ 0, ∀𝑣 ∈ 𝑐𝑙 𝑊𝒟(Ω, 𝑥). (6)

Proof. Let 𝑣 ∈ 𝑐𝑙 𝑊𝒟(Ω, 𝑥) be arbitrary. Then, there exist 𝑣𝑠 ∈ 𝑊𝒟(Ω, 𝑥) such that 𝑣𝑠 → 𝑣 as 𝑠 → ∞.
Consequently, 𝑣𝑠 ∈ 𝑊 (Ω, 𝑥) ∩ 𝒟 and thus we can find a sequence 𝑡𝑞𝑠 → 0+ such that 𝑥 + 𝑡𝑞𝑠𝑣𝑠 ∈ Ω, ∀𝑞 ∈ N. For
𝑞 large enough, since 𝑥 is a local optimal solution of 𝑓 over Ω, we have 𝑓 (𝑥 + 𝑡𝑞𝑠𝑣𝑠) ≥ 𝑓 (𝑥). Then,

𝑓 (𝑥 + 𝑡𝑞𝑠𝑣𝑠)− (𝑥)
𝑡𝑞𝑠

≥ 0, for sufficiently large 𝑞.

Thus,

𝑓+
𝑑 (𝑥, 𝑣𝑠) = lim sup

𝑞

𝑓 (𝑥 + 𝑡𝑞𝑠𝑣𝑠)− 𝑓 (𝑥)
𝑡𝑞𝑠

≥ 0. (7)

Using the upper semi-regularity of 𝜕𝑢𝑠
𝒟 𝑓 (𝑥) at 𝑥, since 𝑣𝑠 ∈ 𝒟, we get

sup
𝜂∈𝜕𝑢𝑠

𝒟 𝑓(𝑥)

⟨𝜂, 𝑣𝑠⟩ ≥ 0.
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Since 𝜕𝑢𝑠
𝒟 𝑓 (𝑥) is compact and taking the limit as 𝑠 →∞, we obtain

sup
𝜂∈𝜕𝑢𝑠

𝒟 𝑓(𝑥)

⟨𝜂, 𝑣⟩ ≥ 0.

Because 𝑣 is arbitrarily chosen in 𝑐𝑙 𝑊𝒟(Ω, 𝑥), we can deduce the desired inquality (6). �

Theorem 3.9. Let 𝑥 be a local optimal solution of 𝑀𝑃𝐸𝐶. Suppose that 𝒟 ≠ {0𝑛}, that Ω is locally star-shaped
at 𝑥 and that Assumption 3.1 holds. If, in addition, Assumptions 3.2 and 3.3 are true for a partition (𝐵1, 𝐵2)
of 𝐵 such that 𝜕𝒟 − 𝐴𝑅𝐶 (𝐵1, 𝐵2) holds at 𝑥 and 𝑝𝑜𝑠 Ξ (𝑥) is closed, then 𝑥 is a generalized alternatively
stationary point.

Proof. Let 𝑥 be a local optimal solution of 𝑀𝑃𝐸𝐶. By Proposition 3.8, we have

sup
𝜂∈𝜕𝑢𝑠

𝒟 𝑓(𝑥)

⟨𝜂, 𝑣⟩ ≥ 0, ∀𝑣 ∈ 𝑐𝑙 𝑊𝒟(Ω, 𝑥).

Consequently,
sup

𝜂∈𝑐𝑜𝑛𝑣𝜕𝑢𝑠
𝒟 𝑓(𝑥)

⟨𝜂, 𝑣⟩ ≥ 0, for all 𝑣 ∈ 𝑐𝑙 𝑊𝒟(Ω, 𝑥).

Since Ω is locally star-shaped at 𝑥, we have 𝑇𝒟(Ω, 𝑥) = 𝑐𝑙 𝑊𝒟(Ω, 𝑥), and thus

sup
𝜂∈𝑐𝑜𝑛𝑣𝜕𝑢𝑠

𝒟 𝑓(𝑥)

⟨𝜂, 𝑣⟩ ≥ 0, for all 𝑣 ∈ 𝑇𝒟(Ω, 𝑥).

– Since 𝜕𝒟 −𝐴𝑅𝐶 (𝐵1, 𝐵2) holds at 𝑥, we have

sup
𝜂∈𝑐𝑜𝑛𝑣𝜕𝑢𝑠

𝒟 𝑓(𝑥)

⟨𝜂, 𝑣⟩ ≥ 0, for all 𝑣 ∈ Ξ (𝑥)− .

Since Ξ (𝑥) ⊆ 𝑝𝑜𝑠 Ξ (𝑥), we get

sup
𝜂∈𝑐𝑜𝑛𝑣𝜕𝑢𝑠

𝒟 𝑓(𝑥)

⟨𝜂, 𝑣⟩ ≥ 0, for all 𝑣 ∈ (𝑝𝑜𝑠 Ξ (𝑥))− .

– Since 𝜕𝑢𝑠
𝒟 𝑓 (𝑥) is compact, 𝑐𝑜𝑛𝑣 𝜕𝑢𝑠

𝒟 𝑓 (𝑥) is also a compact set (see [15], Thm. 1.4.3). By Lemma 2.12, we
get

0 ∈ 𝑐𝑜𝑛𝑣 𝜕𝑢𝑠
𝒟 𝑓 (𝑥) + 𝑐𝑙 𝑝𝑜𝑠 Ξ (𝑥) .

∙ Since 𝑝𝑜𝑠 Ξ (𝑥) is closed, we obtain

0 ∈ 𝑐𝑜𝑛𝑣 𝜕𝑢𝑠
𝒟 𝑓 (𝑥) + 𝑝𝑜𝑠 Γ (𝑥) + 𝑝𝑜𝑠 𝑁𝒟 (0𝑛) .

Since 𝑁𝒟 (0𝑛) is a convex cone, we get 𝑝𝑜𝑠 𝑁𝒟 (0𝑛) = 𝑁𝒟 (0𝑛). Then, there exist scalars 𝜆𝑔
𝑖 ≥ 0, 𝑖 ∈

𝐼 (𝑥), 𝜇ℎ
𝑖 ≥ 0, 𝜆ℎ

𝑖 ≥ 0, 𝑖 ∈ 𝐽, 𝜇𝐺
𝑖 ≥ 0, 𝑖 ∈ 𝐴 ∪ 𝐵2, 𝜆𝐺

𝑖 ≥ 0, 𝑖 ∈ 𝐴 ∪ 𝐵, 𝜇𝐻
𝑖 ≥ 0, 𝑖 ∈ 𝐷 ∪ 𝐵1, and

𝜆𝐻
𝑖 ≥ 0, 𝑖 ∈ 𝐷 ∪𝐵, such that

0 ∈

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑐𝑜𝑛𝑣 𝜕𝑢𝑠
𝒟 𝑓 (𝑥) +

∑︀
𝑖∈𝐼(𝑥)

𝜆𝑔
𝑖 𝑐𝑜𝑛𝑣 𝜕𝑢

𝒟𝑔𝑖 (𝑥)

+
∑︀
𝑖∈𝐽

𝜇ℎ
𝑖 𝑐𝑜𝑛𝑣 𝜕𝑢

𝒟ℎ𝑖 (𝑥) +
∑︀
𝑖∈𝐽

𝜆ℎ
𝑖 𝑐𝑜𝑛𝑣 𝜕𝑢

𝒟 (−ℎ𝑖) (𝑥)

+
∑︀

𝑖∈𝐴∪𝐵2

𝜇𝐺
𝑖 𝑐𝑜𝑛𝑣 𝜕𝑢

𝒟𝐺𝑖 (𝑥) +
∑︀

𝑖∈𝐴∪𝐵

𝜆𝐺
𝑖 𝑐𝑜𝑛𝑣 𝜕𝑢

𝒟 (−𝐺𝑖) (𝑥)

+
∑︀

𝑖∈𝐷∪𝐵1

𝜇𝐻
𝑖 𝑐𝑜𝑛𝑣 𝜕𝑢

𝒟𝐻𝑖 (𝑥) +
∑︀

𝑖∈𝐷∪𝐵

𝜆𝐻
𝑖 𝑐𝑜𝑛𝑣 𝜕𝑢

𝒟 (−𝐻𝑖) (𝑥) + 𝑁𝒟 (0𝑛) .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.
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∙ Setting ⎧⎪⎪⎨⎪⎪⎩
𝜇𝐺

𝑖 = 0, ∀𝑖 ∈ 𝐷 ∪𝐵1

𝜇𝐻
𝑖 = 0, ∀𝑖 ∈ 𝐴 ∪𝐵2

𝜆𝐺
𝑖 = 0, ∀𝑖 ∈ 𝐷

𝜆𝐻
𝑖 = 0, ∀𝑖 ∈ 𝐴

we obtain (3), (4) and (5). The proof is then finished.

�

Remark 3.10. The additional condition mentioned above, the closedness of 𝑝𝑜𝑠 Ξ (𝑥), has been previously
used by several authors in the continuous case (see [1, 17] and [19]). Observe that if 𝑐𝑜𝑛𝑣 Ξ (𝑥) is a polyhedral
set containing the origin, then 𝑝𝑜𝑠 Ξ (𝑥) is a polyhedral convex cone Corollary 19.7.1 of [26] and, thus, closed.
Notice that 𝑝𝑜𝑠 Ξ (𝑥) = 𝑝𝑜𝑠 𝑐𝑜𝑛𝑣 Ξ (𝑥).

The following example provides a case where Theorem 3.9 is applicable while both Theorem 4.4 of [20] and
Theorem 4.5 of [1] are not. Observe that in Example 3.11, the objective function 𝑓 is not continuous; thus not
locally Lipschitz and consequently Theorem 4.4 of [20] and Theorem 4.5 of [1] cannot be used with this last
property imposed.

Example 3.11. Consider the following nonsmooth optimization problem:

(𝑀𝑃𝐸𝐶) :

⎧⎨⎩
Minimize 𝑓 (𝑥1, 𝑥2)

s.t.
{︂

𝑔 (𝑥1, 𝑥2) ≤ 0, ℎ (𝑥1, 𝑥2) = 0,

𝐺 (𝑥1, 𝑥2) ≥ 0, 𝐻 (𝑥1, 𝑥2) ≥ 0, 𝐺 (𝑥1, 𝑥2)⊤𝐻 (𝑥1, 𝑥2) = 0,

where 𝑔 (𝑥1, 𝑥2) = |𝑥2|, ℎ (𝑥1, 𝑥2) = 0, 𝐻 (𝑥1, 𝑥2) = 𝑥2

𝐺 (𝑥1, 𝑥2) =
{︂

𝑥1 if 𝑥2 ≥ 0
𝑥2 + 1 elsewhere.

and

𝑓 (𝑥1, 𝑥2) =

⎧⎨⎩ 2𝑥2 − 1 if 𝑥1 = 0, 𝑥2 > 0,
−3𝑥1 − 1 if 𝑥1 < 0, 𝑥2 = 0,
|𝑥1| − |𝑥2| − 2 elsewhere.

– On the one hand, since

𝒟𝑓 (𝑥) = R2 ∖ ({0} × (0, +∞) ∪ (−∞, 0)× {0}),𝒟𝑔 (𝑥, 𝑦) = 𝐷ℎ (𝑥, 𝑦) = 𝐷𝐻 (𝑥, 𝑦) = R× R

and
𝒟𝐺 (𝑥, 𝑦) = R× R+

we have
𝒟 =

(︀
R× R+

)︀
∖ ({0} × (0, +∞) ∪ (−∞, 0)× {0}) .

Consequently,
𝑁𝒟 (02) = {0} × R−.

– On the other hand, 𝑥 = (0, 0) is an optimal solution of (𝑀𝑃𝐸𝐶). Moreover, 𝐴 = 𝐷 = ∅, 𝐵 = {1}, 𝐼 =
{1} , 𝐽 = {1}, Ω = R+ × {0}, 𝑊 (Ω, 𝑥) = R+ × {0} and 𝑊𝒟 (Ω, 𝑥) = R+ × {0}.
∙ 𝜕𝒟 −𝐴𝑅𝐶 (𝐵1, 𝐵2) holds at 𝑥.

∘ 𝜕𝑢𝑠
𝒟 𝑓 (𝑥) = {(1,−1), (−1, 1)} is a compact directional upper semi-regular convexificator of 𝑓 at 𝑥.

∘ 𝜕𝑢
𝒟𝑔 (𝑥) = {(0, 1)}, 𝜕𝑢

𝒟ℎ (𝑥) = {(0, 0)}, 𝜕𝑢
𝒟𝐺 (𝑥) = {(1, 0)} and 𝜕𝑢

𝒟𝐻 (𝑥) = {(0, 1)} are directional
upper convexificators of 𝑔, ℎ, 𝐺 and 𝐻 at 𝑥.
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∘ For 𝐵1 = {1} and 𝐵2 = ∅, we have

Γ (𝑥) = {(0, 1), (0, 1), (0,−1), (−1, 0)} .

Consequently,
Ξ (𝑥) = {(0, 1), (0,−1), (−1, 0)} ∪

(︀
{0} × R−

)︀
.

Then,
Ξ (𝑥)− = R+ × {0} .

Since 𝑇𝒟 (Ω, 𝑥) = R+ × {0}, we deduce that {(0, 0)} ≠ Ξ (𝑥)− ⊆ 𝑇𝒟 (Ω, 𝑥).
∙ 𝑝𝑜𝑠 Ξ (𝑥) is closed. Indeed,

𝑝𝑜𝑠 Ξ (𝑥) = R− × R.

– By taking 𝜆𝑔 = 2, 𝜇𝐺 = 2
3 , 𝜆ℎ = 𝜇ℎ = 𝜇𝐻 = 0, 𝜆𝐻 = 1

3 and 𝜆𝐺 = 1, since
(︀
0,− 4

3

)︀
∈ 𝑁𝒟 (02) and(︀

1
3 ,− 1

3

)︀
∈ 𝑐𝑜𝑛𝑣 𝜕𝑢𝑠

𝒟 𝑓 (𝑥), we get

0 ∈

⎡⎢⎢⎣
𝑐𝑜𝑛𝑣 𝜕𝑢𝑠

𝒟 𝑓 (𝑥) + 𝜆𝑔 𝑐𝑜𝑛𝑣 𝜕𝑢
𝒟𝑔 (𝑥)

+𝜇ℎ 𝑐𝑜𝑛𝑣 𝜕𝑢
𝒟ℎ (𝑥) + 𝜆ℎ 𝑐𝑜𝑛𝑣 𝜕𝑢

𝒟 (−ℎ) (𝑥)
+𝜆𝐺 𝑐𝑜𝑛𝑣 𝜕𝑢

𝒟 (−𝐺) (𝑥) + 𝜆𝐻 𝑐𝑜𝑛𝑣 𝜕𝑢
𝒟 (−𝐻) (𝑥)

+𝜇𝐺 𝑐𝑜𝑛𝑣 𝜕𝑢
𝒟𝐺 (𝑥) + 𝜇𝐻 𝑐𝑜𝑛𝑣 𝜕𝑢

𝒟𝐻 (𝑥) + 𝑁𝒟 (02) .

⎤⎥⎥⎦
Remark 3.12. It is clear that the smaller the directional upper (semi-regular) convexificator is, the more useful
the optimality conditions using this directional upper (semi-regular) convexificator are. Notice that our findings
are established independent of the directional upper (semi-regular) convexificators utilized. As a consequence,
the results in this work are valid for each directional upper (semi-regular) convexificator.

4. Sufficient optimality conditions

In order to get sufficient optimality conditions, we need the following notions.

Definition 4.1. Let 𝑓 : R𝑛 −→ R and 𝑥 ∈ R𝑛. We assume that 𝑓 admits a directional upper (semi-regular)
convexificator 𝜕𝑢

𝒟𝑓 (𝑥) ⊆ R𝑛 at 𝑥.

– 𝑓 is said to be 𝜕𝑢
𝒟-convex at 𝑥 iff for all 𝑥 ∈ R𝑛:

⟨𝜉, 𝑥− 𝑥⟩ ≤ 𝑓 (𝑥)− 𝑓 (𝑥), for all 𝜉 ∈ 𝑐𝑜𝑛𝑣 𝜕𝑢
𝒟𝑓 (𝑥) + 𝑁𝒟 (0𝑛) .

– 𝑓 is said to be 𝜕𝑢
𝒟-quasiconvex at 𝑥 iff for all 𝑥 ∈ R𝑛:

𝑓 (𝑥)− 𝑓 (𝑥) ≤ 0 ⇒ ⟨𝜉, 𝑥− 𝑥⟩ ≤ 0, for all 𝜉 ∈ 𝑐𝑜𝑛𝑣 𝜕𝑢
𝒟𝑓 (𝑥) + 𝑁𝒟 (0𝑛) .

– 𝑓 is said to be 𝜕𝑢
𝒟-pseudoconvex at 𝑥 iff for all 𝑥 ∈ R𝑛:

𝑓 (𝑥)− 𝑓 (𝑥) < 0 ⇒ ⟨𝜉, 𝑥− 𝑥⟩ < 0, for all 𝜉 ∈ 𝑐𝑜𝑛𝑣 𝜕𝑢
𝒟𝑓 (𝑥) + 𝑁𝒟 (0𝑛) .

– 𝑓 is said to be 𝜕𝑢
𝒟-quasilinear at 𝑥 iff 𝑓 and (−𝑓) are both 𝜕𝑢

𝒟-quasiconvex at 𝑥.

Let 𝑥 ∈ Ω be a feasible point satisfying the generalized alternatively stationary condition and let

𝒮 := 𝐵+
𝐺 ∪𝐵+

𝐻 ∪𝐵+ ∪𝐴+ ∪𝐷+

where
𝐵+

𝐺 :=
{︀
𝑖 ∈ 𝐵 : 𝜇𝐺

𝑖 = 0 and 𝜇𝐻
𝑖 > 0

}︀
, 𝐵+

𝐻 :=
{︀
𝑖 ∈ 𝐵 : 𝜇𝐺

𝑖 > 0 and 𝜇𝐻
𝑖 = 0

}︀
,

𝐵+ :=
{︀
𝑖 ∈ 𝐵 : 𝜇𝐺

𝑖 > 0 and 𝜇𝐻
𝑖 > 0

}︀
, 𝐴+ :=

{︀
𝑖 ∈ 𝐴 : 𝜇𝐺

𝑖 > 0
}︀

and 𝐷+ :=
{︀
𝑖 ∈ 𝐷 : 𝜇𝐻

𝑖 > 0
}︀

.

Here, 𝜇𝐺 and 𝜇𝐻 are the multipliers associated to the point 𝑥 which satisfies the generalized alternatively
stationary condition.
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Theorem 4.2. Let 𝑥 ∈ Ω be a feasible point for (𝑀𝑃𝐸𝐶) where the generalized alternatively stationary condi-
tion holds. Assume 𝒮 is empty, 𝑓 is 𝜕𝑢

𝒟−pseudoconvex at 𝑥, 𝑔𝑖, 𝑖 ∈ 𝐼 (𝑥),−𝐺𝑖, 𝑖 ∈ 𝐴∪𝐵, −𝐻𝑖, 𝑖 ∈ 𝐷∪𝐵, are
𝜕𝑢
𝒟-quasiconvex at 𝑥 and ℎ𝑖, 𝑖 ∈ 𝐽 , is 𝜕𝑢

𝒟-quasilinear at 𝑥. Then 𝑥 is a global optimal solution of (𝑀𝑃𝐸𝐶).

Proof. Suppose that 𝑥 is not a global optimal solution of (𝑀𝑃𝐸𝐶). Then, there exists 𝑥0 ∈ Ω such that
𝑓 (𝑥) > 𝑓 (𝑥0). Since 𝑓 is 𝜕𝑢

𝒟-pseudoconvex at 𝑥, we get

⟨𝜉*, 𝑥0 − 𝑥⟩ < 0, for all 𝜉* ∈ 𝑐𝑜𝑛𝑣 𝜕𝑢
𝒟𝑓 (𝑥) + 𝑁𝒟 (0𝑛) . (8)

Using (3), we can find 𝜉 ∈ 𝑐𝑜𝑛𝑣 𝜕𝑢𝑠
𝒟 𝑓 (𝑥), 𝜁𝑖 ∈ 𝑐𝑜𝑛𝑣 𝜕𝑢

𝒟𝑔𝑖 (𝑥), 𝜍𝑖 ∈ 𝑐𝑜𝑛𝑣 𝜕𝑢
𝒟ℎ𝑖 (𝑥), 𝜌𝑖 ∈ 𝑐𝑜𝑛𝑣 𝜕𝑢

𝒟 (−ℎ𝑖) (𝑥), 𝛾*𝑖 ∈
𝑐𝑜𝑛𝑣 𝜕𝑢

𝒟 (−𝐺𝑖) (𝑥), 𝛾**𝑖 ∈ 𝑐𝑜𝑛𝑣 𝜕𝑢
𝒟𝐺𝑖 (𝑥), 𝜃*𝑖 ∈ 𝑐𝑜𝑛𝑣 𝜕𝑢

𝒟 (−𝐻𝑖) (𝑥), 𝜃**𝑖 ∈ 𝑐𝑜𝑛𝑣 𝜕𝑢
𝒟𝐻𝑖 (𝑥) and 𝜏* ∈ 𝑁𝒟 (0𝑛) such

that

0 = 𝜉 +
𝑚∑︁

𝑖=1

𝜆𝑔
𝑖 𝜁𝑖 +

∑︁
𝑖∈𝐽

𝜇ℎ
𝑖 𝜍𝑖 +

∑︁
𝑖∈𝐽

𝜆ℎ
𝑖 𝜌𝑖 +

𝑙∑︁
𝑖=1

𝜆𝐺
𝑖 𝛾*𝑖 +

𝑙∑︁
𝑖=1

𝜆𝐻
𝑖 𝜃*𝑖 +

𝑙∑︁
𝑖=1

𝜇𝐺
𝑖 𝛾**𝑖 +

𝑙∑︁
𝑖=1

𝜇𝐻
𝑖 𝜃**𝑖 + 𝜏*.

Then,

0 = ⟨𝜉, 𝑥0 − 𝑥⟩+
𝑚∑︁

𝑖=1

𝜆𝑔
𝑖 ⟨𝜁𝑖, 𝑥0 − 𝑥⟩+

∑︁
𝑖∈𝐽

𝜇ℎ
𝑖 ⟨𝜍𝑖, 𝑥0 − 𝑥⟩

+
∑︁
𝑖∈𝐽

𝜆ℎ
𝑖 ⟨𝜌𝑖, 𝑥0 − 𝑥⟩+

𝑙∑︁
𝑖=1

𝜆𝐺
𝑖 ⟨𝛾*𝑖 , 𝑥0 − 𝑥⟩+

𝑙∑︁
𝑖=1

𝜆𝐻
𝑖 ⟨𝜃*𝑖 , 𝑥0 − 𝑥⟩

+
𝑙∑︁

𝑖=1

𝜇𝐺
𝑖 ⟨𝛾**𝑖 , 𝑥0 − 𝑥⟩+

𝑙∑︁
𝑖=1

𝜇𝐻
𝑖 ⟨𝜃**𝑖 , 𝑥0 − 𝑥⟩+ ⟨𝜏*, 𝑥0 − 𝑥⟩ .

– Observing that ⎧⎪⎨⎪⎩
𝑔𝑖 (𝑥0) ≤ 𝑔 (𝑥), 𝑖 ∈ 𝐼 (𝑥) ,

ℎ𝑖 (𝑥0) = ℎ𝑖 (𝑥) = 0, 𝑖 ∈ 𝐽,
(−𝐺𝑖) (𝑥0) ≤ (−𝐺𝑖) (𝑥), 𝑖 ∈ 𝐴 ∪𝐵,
(−𝐻𝑖) (𝑥0) ≤ (−𝐻𝑖) (𝑥), 𝑖 ∈ 𝐷 ∪𝐵,

we get ⎧⎪⎨⎪⎩
𝑔𝑖 (𝑥0)− 𝑔 (𝑥) ≤ 0, 𝑖 ∈ 𝐼 (𝑥) ,
ℎ𝑖 (𝑥0)− ℎ𝑖 (𝑥) = 0, 𝑖 ∈ 𝐽,

(−𝐺𝑖) (𝑥0)− (−𝐺𝑖) (𝑥) ≤ 0, 𝑖 ∈ 𝐴 ∪𝐵,
(−𝐻𝑖) (𝑥0)− (−𝐻𝑖) (𝑥) ≤ 0, 𝑖 ∈ 𝐷 ∪𝐵,

∙ By the 𝜕𝑢
𝒟-quasiconvexity of 𝑔𝑖, 𝑖 ∈ 𝐼 (𝑥), −𝐺𝑖, 𝑖 ∈ 𝐴 ∪ 𝐵, −𝐻𝑖, 𝑖 ∈ 𝐷 ∪ 𝐵, at 𝑥, as 0 ∈ 𝑁𝒟 (0𝑛), we

obtain ⎧⎨⎩ ⟨𝜁𝑖, 𝑥0 − 𝑥⟩ ≤ 0, for all 𝑖 ∈ 𝐼 (𝑥),
⟨𝛾*𝑖 , 𝑥0 − 𝑥⟩ ≤ 0, 𝑖 ∈ 𝐴 ∪𝐵,
⟨𝜃*𝑖 , 𝑥0 − 𝑥⟩ ≤ 0, 𝑖 ∈ 𝐷 ∪𝐵.

Then, ⟨ ∑︁
𝑖∈𝐼(𝑥)

𝜁𝑖, 𝑥0 − 𝑥

⟩
≤ 0,

⟨ ∑︁
𝑖∈𝐴∪𝐵

𝜆𝐺
𝑖 𝛾*𝑖 , 𝑥0 − 𝑥

⟩
≤ 0 and

⟨ ∑︁
𝑖∈𝐷∪𝐵

𝜆𝐻
𝑖 𝜃*𝑖 , 𝑥0 − 𝑥

⟩
≤ 0.

∘ By (5), we have 𝜆𝐺
𝑖 = 0 for all 𝑖 ∈ 𝐷, and 𝜆𝐻

𝑖 = 0, for all 𝑖 ∈ 𝐴. Consequently,⟨
𝑙∑︁

𝑖=1

𝜆𝐺
𝑖 𝛾*𝑖 , 𝑥0 − 𝑥

⟩
≤ 0 (9)
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and ⟨
𝑙∑︁

𝑖=1

𝜆𝐻
𝑖 𝜃*𝑖 , 𝑥0 − 𝑥

⟩
≤ 0. (10)

∘ By (4), we have 𝜆𝑔
𝑖 = 0 for all 𝑖 /∈ 𝐼 (𝑥). Consequently,⟨

𝑚∑︁
𝑖=1

𝜆𝑔
𝑖 𝜁𝑖, 𝑥0 − 𝑥

⟩
≤ 0. (11)

∙ By the 𝜕𝑢
𝒟-quasilinearity of ℎ𝑖, 𝑖 ∈ 𝐽, at 𝑥, as 0 ∈ 𝑁𝒟 (0𝑛), we get⟨∑︁

𝑖∈𝐽

𝜆𝑔
𝑖 𝜍𝑖, 𝑥0 − 𝑥

⟩
≤ 0, for all 𝑖 ∈ 𝐽 (12)

and ⟨∑︁
𝑖∈𝐽

𝜌𝑖, 𝑥0 − 𝑥

⟩
≤ 0, for all 𝑖 ∈ 𝐽. (13)

∙ From the emptiness of 𝒮, we deduce that 𝜇𝐺
𝑖 = 0 and 𝜇𝐻

𝑖 = 0, for all 𝑖 ∈ ℒ. Then,

𝑙∑︁
𝑖=1

𝜇𝐺
𝑖 ⟨𝛾**𝑖 , 𝑥0 − 𝑥⟩+

𝑙∑︁
𝑖=1

𝜇𝐻
𝑖 ⟨𝜃**𝑖 , 𝑥0 − 𝑥⟩ = 0. (14)

– Summing (9)− (14), we obtain

0 ≥
⟨

𝑚∑︀
𝑖=1

𝜆𝑔
𝑖 𝜁𝑖, 𝑥0 − 𝑥

⟩
+
⟨∑︀

𝑖∈𝐽

𝜇ℎ
𝑖 𝜍𝑖, 𝑥0 − 𝑥

⟩
+
⟨∑︀

𝑖∈𝐽

𝜆ℎ
𝑖 𝜍𝑖𝜌𝑖, 𝑥0 − 𝑥

⟩
+
⟨

𝑙∑︀
𝑖=1

𝜆𝐺
𝑖 𝛾*𝑖 , 𝑥0 − 𝑥

⟩
+
⟨

𝑙∑︀
𝑖=1

𝜆𝐻
𝑖 𝜃*𝑖 , 𝑥0 − 𝑥

⟩
+

𝑙∑︀
𝑖=1

𝜇𝐺
𝑖 ⟨𝛾**𝑖 , 𝑥0 − 𝑥⟩+

𝑙∑︀
𝑖=1

𝜇𝐻
𝑖 ⟨𝜃**𝑖 , 𝑥0 − 𝑥⟩ ;

which implies
0 ≤ ⟨𝜉 + 𝜏, 𝑥0 − 𝑥⟩ . (15)

Since 𝜉 ∈ 𝑐𝑜𝑛𝑣 𝜕𝑢𝑠
𝒟 𝑓 (𝑥) and 𝜏* ∈ 𝑁𝒟 (0𝑛), Inequality (15) contradicts (8).

�

5. Conclusion

This work was about a nonsmooth mathematical program with equilibrium constraints (𝑀𝑃𝐸𝐶) in which the
functions are not always locally Lipschitz or continuous. Using directional upper convexificators and directional
upper semi-regular convexificators, we introduced an alternative stationarity concept. Under an appropriate
Abadie regularity condition, given in terms of directional upper convexificators, we established that alternative
stationarity is a first-order necessary optimality condition. Unlike Dempe and Pilecka (Journal of Global Opti-
mization 61: 769–788, 2015), we reach our goal without resorting to convexificators; the reason is that we do not
assume that the sets of all continuity directions are convex or closed. The obtained results are given in terms
of directional upper convexificators and directional upper semi-regular convexificators. In order to get sufficient
optimality conditions, we made use of 𝜕𝑢

𝒟-pseudoconvexity and 𝜕𝑢
𝒟-quasiconvexity on the functions.
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