Isolated toughness variant and fractional k -factor
RAIRO. Operations Research, Tome 56 (2022) no. 5, pp. 3675-3688

Isolated toughness is a crucial parameter considered in network security which characterizes the vulnerability of the network from the perspective of graph topology. I’(G) is the unique variant of isolated toughness which was introduced in 2001. This work investigates the correlation of I’(G) and the existence of fractional factor. It is proved that a graph G with δ(G) ≥ k admits fraction k-factor if I’(G) > 2k − 1, where k ≥ 2 is an integer. A counterexample is presented to show the sharpness of I’(G) bound.

DOI : 10.1051/ro/2022177
Classification : 05C70
Keywords: Graph, isolated toughness, fractional $$-factor
@article{RO_2022__56_5_3675_0,
     author = {He, Zhengyue and Liang, Li and Gao, Wei},
     title = {Isolated toughness variant and fractional $k$-factor},
     journal = {RAIRO. Operations Research},
     pages = {3675--3688},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {5},
     doi = {10.1051/ro/2022177},
     mrnumber = {4502919},
     zbl = {1502.05203},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022177/}
}
TY  - JOUR
AU  - He, Zhengyue
AU  - Liang, Li
AU  - Gao, Wei
TI  - Isolated toughness variant and fractional $k$-factor
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 3675
EP  - 3688
VL  - 56
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022177/
DO  - 10.1051/ro/2022177
LA  - en
ID  - RO_2022__56_5_3675_0
ER  - 
%0 Journal Article
%A He, Zhengyue
%A Liang, Li
%A Gao, Wei
%T Isolated toughness variant and fractional $k$-factor
%J RAIRO. Operations Research
%D 2022
%P 3675-3688
%V 56
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022177/
%R 10.1051/ro/2022177
%G en
%F RO_2022__56_5_3675_0
He, Zhengyue; Liang, Li; Gao, Wei. Isolated toughness variant and fractional $k$-factor. RAIRO. Operations Research, Tome 56 (2022) no. 5, pp. 3675-3688. doi: 10.1051/ro/2022177

[1] J. A. Bondy and U. S. R. Mutry, Graph Theory. Springer, Berlin (2008). | MR | Zbl | DOI

[2] W. Gao and W. Wang, New isolated toughness condition for fractional ( g , f , n ) -critical graphs. Colloq. Math. 147 (2017) 55–66. | MR | Zbl | DOI

[3] W. Gao, Y. Chen and Y. Wang, Network vulnerability parameter and results on two surfaces. Int. J. Intell. Syst. 36 (2021) 4392–4414. | DOI

[4] W. Gao, Y. Chen and Y. Zhang, Viewing the network parameters and -factors from the perspective of geometry. Int. J. Intell. Syst. 37 (2022) 6686–6728. | DOI

[5] G. Liu and L. Zhang, Fractional ( g , f ) -factors of graphs. Acta Math. Sci. 21 (2001) 541–545. | MR | Zbl | DOI

[6] G. Liu and L. Zhang, Toughness and the existence of fractional k -factors of graphs. Discrete Math. 308 (2008) 1741–1748. | MR | Zbl | DOI

[7] Y. Ma and G. Liu, Fractional factors and isolated toughness of graphs. Math. Appl. 19 (2006) 188–194. | MR | Zbl

[8] J. Yang, Y. Ma and G. Liu, Fractional ( g , f ) -factors in graphs. Appl. Math. J. Chinese Univ. Ser. A 16 (2001) 385–390. | MR | Zbl

[9] S. Zhou, Remarks on restricted fractional ( g , f ) -factors in graphs. Discrete Appl. Math. | DOI | MR | Zbl

[10] L. Zhang and G. Liu, Fractional k -factor of graphs. J. Syst. Sci. Math. Sci. 21 (2001) 88–92. | MR | Zbl

[11] S. Zhou, H. Liu and Y. Xu, A note on fractional ID- [ a , b ] -factor-critical covered graphs. Discrete Appl. Math. 319 (2022) 511–516. | MR | Zbl | DOI

[12] S. Zhou, J. Wu and Q. Bian, On path-factor critical deleted (or covered) graphs. Aequ. Math. 96 (2022) 795–802. | MR | Zbl | DOI

[13] S. Zhou, J. Wu and H. Liu, Independence number and connectivity for fractional ( a , b , k ) -critical covered graphs. RAIRO:OR 56 (2022) 2535–2542. | MR | Zbl | Numdam | DOI

[14] S. Zhou, J. Wu and Y. Xu, Toughness, isolated toughness and path factors in graphs. Bull. Aust. Math. Soc. 106 (2022) 195–202. | MR | Zbl | DOI

Cité par Sources :