Independence number and connectivity for fractional ( a , b , k ) -critical covered graphs
RAIRO. Operations Research, Tome 56 (2022) no. 4, pp. 2535-2542

A graph G is a fractional (abk)-critical covered graph if G − U is a fractional [ab]-covered graph for every U ⊆ V(G) with |U| = k, which is first defined by (Zhou, Xu and Sun, Inf. Process. Lett. 152 (2019) 105838). Furthermore, they derived a degree condition for a graph to be a fractional (abk)-critical covered graph. In this paper, we gain an independence number and connectivity condition for a graph to be a fractional (abk)-critical covered graph and verify that G is a fractional (abk)-critical covered graph if

κ(G) max {2b(a+1)(b+1)+4bk+5 4b,(a+1) 2 α(G)+4bk+5 4b}.

DOI : 10.1051/ro/2022119
Classification : 05C70, 68R10, 68M10
Keywords: Network, ndependence number, connectivity, fractional [$$]-factor, fractional ($$, $$, $$)-critical covered graph
@article{RO_2022__56_4_2535_0,
     author = {Zhou, Sizhong and Wu, Jiancheng and Liu, Hongxia},
     title = {Independence number and connectivity for fractional $( a , b , k )$-critical covered graphs},
     journal = {RAIRO. Operations Research},
     pages = {2535--2542},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {4},
     doi = {10.1051/ro/2022119},
     mrnumber = {4469499},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022119/}
}
TY  - JOUR
AU  - Zhou, Sizhong
AU  - Wu, Jiancheng
AU  - Liu, Hongxia
TI  - Independence number and connectivity for fractional $( a , b , k )$-critical covered graphs
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 2535
EP  - 2542
VL  - 56
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022119/
DO  - 10.1051/ro/2022119
LA  - en
ID  - RO_2022__56_4_2535_0
ER  - 
%0 Journal Article
%A Zhou, Sizhong
%A Wu, Jiancheng
%A Liu, Hongxia
%T Independence number and connectivity for fractional $( a , b , k )$-critical covered graphs
%J RAIRO. Operations Research
%D 2022
%P 2535-2542
%V 56
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022119/
%R 10.1051/ro/2022119
%G en
%F RO_2022__56_4_2535_0
Zhou, Sizhong; Wu, Jiancheng; Liu, Hongxia. Independence number and connectivity for fractional $( a , b , k )$-critical covered graphs. RAIRO. Operations Research, Tome 56 (2022) no. 4, pp. 2535-2542. doi: 10.1051/ro/2022119

[1] H. Assiyatun and N. Wormald, 3 -star factors in random d -regular graphs. Eur. J. Comb. 27 (2006) 1249–1262. | MR | DOI

[2] S. Bekkai, Minimum degree, independence number and pseudo [ 2 , b ] -factors in graphs. Discrete Appl. Math. 162 (2014) 108–114. | MR | DOI

[3] S. Belcastro and M. Young, 1 -factor covers of regular graphs. Discrete Appl. Math. 159 (2011) 281–287. | MR | DOI

[4] Q. Bian and S. Zhou, Independence number, connectivity and fractional ( g , f ) -factors in graphs. Filomat 29 (2015) 757–761. | MR | DOI

[5] Y. Egawa, M. Kano and M. Yokota, Existence of all generalized fractional ( g , f ) -factors of graphs. Discrete Appl. Math. 283 (2020) 265–271. | MR | DOI

[6] W. Gao, J. Guirao and Y. Chen, A toughness condition for fractional ( k , m ) -deleted graphs revisited. Acta Math. Sin. Engl. Ser. 35 (2019) 1227–1237. | MR | DOI

[7] W. Gao, W. Wang and J. Guirao, The extension degree conditions for fractional factor. Acta Math. Sin. Engl. Ser. 36 (2020) 305–317. | MR | DOI

[8] K. Kotani, Binding numbers of fractional k -deleted graphs. Proc. Japan Acad. Ser. A 86 (2010) 85–88. | MR | DOI

[9] Z. Li, G. Yan and X. Zhang, On fractional ( g , f ) -covered graphs. OR Trans. (China) 6 (2002) 65–68.

[10] G. Liu and L. Zhang, Characterizations of maximum fractional ( g , f ) -factors of graphs. Discrete Appl. Math. 156 (2008) 2293–2299. | MR | DOI

[11] X. Lv, A degree condition for fractional ( g , f , n ) -critical covered graphs. AIMS Math. 5 (2020) 872–878. | MR | DOI

[12] S. Tsuchiya and T. Yashima, A degree condition implying Ore-type condition for even [ 2 , b ] -factors in graphs. Discuss. Math. Graph Theory 37 (2017) 797–809. | MR | DOI

[13] S. Wang and W. Zhang, Research on fractional critical covered graphs. Probl. Inf. Transm. 56 (2020) 270–277. | DOI

[14] S. Wang and W. Zhang, On k -orthogonal factorizations in networks. RAIRO-Oper. Res. 55 (2021) 969–977. | MR | Zbl | Numdam | DOI

[15] Y. Yuan and R. Hao, A neighborhood union condition for fractional ID- [ a , b ] -factor-critical graphs. Acta Math. Appl. Sin. Engl. Ser. 34 (2018) 775–781. | MR | DOI

[16] S. Zhou, Some results on path-factor critical avoidable graphs. Discuss. Math. Graph Theory (2020) DOI: . | DOI | MR

[17] S. Zhou, A neighborhood union condition for fractional ( a , b , k ) -critical covered graphs. Discrete Appl. Math. (2021) DOI: . | DOI | MR

[18] S. Zhou, A result on fractional ( a , b , k ) -critical covered graphs. Acta Math. Appl. Sin. Engl. Ser. 37 (2021) 657–664. | MR | DOI

[19] S. Zhou, Path factors and neighborhoods of independent sets in graphs. Acta Math. Appl. Sin. Engl. Ser. DOI: . | DOI | MR

[20] S. Zhou and H. Liu, Discussions on orthogonal factorizations in digraphs. Acta Math. Appl. Sin. Engl. Ser. 38 (2022) 417–425. | MR | DOI

[21] S. Zhou, Y. Xu and Z. Sun, Degree conditions for fractional ( a , b , k ) -critical covered graphs. Inf. Process. Lett. 152 (2019) 105838. | MR | DOI

[22] S. Zhou, J. Wu and Y. Xu, Toughness, isolated toughness and path factors in graphs. Bull. Aust. Math. Soc. (2021) DOI: . | DOI | MR

[23] S. Zhou, Q. Bian and Q. Pan, Path factors in subgraphs. Discrete Appl. Math. 319 (2022) 183–191. | MR | DOI

[24] S. Zhou, H. Liu and Y. Xu, A note on fractional ID- [ a , b ] -factor-critical covered graphs. Discrete Appl. Math. 319 (2022) 511–516. | MR | DOI

[25] S. Zhou, Z. Sun and Q. Bian, Isolated toughness and path-factor uniform graphs (II). Indian J. Pure Appl. Math. (2022) DOI: . | DOI | MR

[26] S. Zhou, Z. Sun and H. Liu, On P 3 -factor deleted graphs. Acta Math. Appl. Sin. Engl. Ser. 38 (2022) 178–186. | MR | DOI

[27] S. Zhou, J. Wu and Q. Bian, On path-factor critical deleted (or covered) graphs. Aequationes Math. 96 (2022) 795–802. | MR | DOI

Cité par Sources :