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ISOLATED TOUGHNESS VARIANT AND FRACTIONAL k-FACTOR

ZHENGYUE HE, L1 LiANG AND WEI GAO*

Abstract. Isolated toughness is a crucial parameter considered in network security which characterizes
the vulnerability of the network from the perspective of graph topology. I’ (G) is the unique variant of
isolated toughness which was introduced in 2001. This work investigates the correlation of I'(G) and
the existence of fractional factor. It is proved that a graph G with §(G) > k admits fraction k-factor

if I'(G) > 2k — 1, where k > 2 is an integer. A counterexample is presented to show the sharpness of
I'(G) bound.
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1. INTRODUCTION

This work only considers simple and finite graphs. Let G be a graph with vertex set V(G) and edge set E(G)
We denote dg(v) and Ng(v) (simply by d(v) and N(v)) as the degree and the neighborhood of v € V(G)
respectively. For any S C V(G), G[S] denotes the subgraph of G induced by S, and set G — S = G[V(G) \ S].
Set 6(G) = min, ey (g){d(v)} as the minimum degree of G. The notations and terminologies used but undefined
in this paper can be found in Bondy and Mutry [1].

Let k be a positive integer and h : E(G) — [0, 1] be an indicator function defined on the edge set. A fractional
k-factor is a spanning subgraph induced by Ej, = {e € E(G)|h(e) > 0} if d&(v) = 2 wen(w) Mov') =k for each
vertex v. We say graph G admits a fractional factor if such indictor function h exists.

Inspired by the idea of toughness, Yang et al. [8] introduced the notion of isolated toughness which is formalized
as follows: I(G) = 40 if G is a complete graph; otherwise,

)

1(G) = min{ijS)’S CV(G),i(G - S) > 2},

i
where i(G — S) is the number of isolated vertices in G — S. A variant of isolated toughness was introduced by
Zhang and Liu [10] which is formulated as

5]

I'G) = min{i(G_S)_l‘S CV(GQ),i(G—S) > 2}

if G is not a complete graph, and otherwise I'(G) = +oo.
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Due to the theoretical importance and significant application of such parameters in specific fields, the inves-
tigation of isolation toughness in the setting of extended fractional factors (e.g., fractional (g, f)-factor, all
fractional factors, component factor), and in the setting of fractional deleted graph and fractional critical graph
has attracted the attention from scholars. Ma and Liu [7] confirmed that a graph G admits a fractional k-factor
if 6(G) > k and I(G) > k. Gao and Wang [2] determined an I(G) bound for fractional (g, f, n)-critical graphs.
Gao et al. [3] studied the I(G) condition for a graph which admits the component factor when the given num-
bers of edges are missing. Gao et al. [4] considered the isolated toughness parameter in 5-dimensional space,
and computed the expression of detailed space structures. Zhou et al. [14] investigated the relationship between
isolated toughness and path factors. More results on this topic and other extensions can be referred to [9,11-13].

However, these extant results almost focus on original isolated toughness I(G), and there are few advances
on I'(G). Early studies found that I(G) and I'(G) have obvious differences in parameter characteristics, while
it is observed that most of the previously confirmed results for I(G) are still open when considering I'(G)
variant. For instance, the sharp I(G) bound for a graph with fractional k-factor was completely solved in 2006,
and unfortunately, the tight I'(G) condition for the existence of fractional k-factor is open till now. This tragic
situation motivates us to do further in-depth research on I'(G).

In this paper, we study the correlation between I'(G) and fractional k-factor. Our main result can be for-
malized in the following theorem.

Theorem 1. Let G be a graph and k > 2 be an integer. If 6(G) > k and I'(G) > 2k —1, then G has a fractional
k-factor.

Obviously, §(G) > k is tight for the existence of fractional k-factor in terms of its definition. The following
example reveals the sharpness of I'(G) bound in Theorem 1. Consider G = (2K}) V Ky where ” V” means a
vertex in K adjacent to all vertices in 2K}. Thus, we infer

I'G) =2k —1.
Set S =V(K;) and T = V(2K}). We verify
kS| = k|T|+ " da_s(x) =k — k(2k) + 2k(k — 1) = —k <0,
zeT

which implies that GG has no fractional k-factor in view of Lemma 1.
To prove Theorem 1, the following lemma which characterises the necessary and sufficient condition of
fractional k-factor is required.

Lemma 1. ( Liu and Zhang [5]) Let k > 1 be an integer. Then G has a fractional k-factor if and only if

kS| = KT+ ) da-s(x) >0
xeT

holds for any S C V(QG), where T = {x € V(G) — S|dg_s(x) < k}.

Obviously, for a given subset S of V(G), the subset 7' in Lemma 1 can be equivalently stated by 7' = {x €
V(G) — S|ldg—s(x) < k — 1}. Tt is worthy to emphasize that Lemma 1 has its equal statement as follows.

Lemma 2. (Liu and Zhang [5]) Let k > 1 be an integer. Then G has a fractional k-factor if and only if

kS| = KT+ ) da-s(x) =0
zeT

holds for any disjoint subsets S,T C V(G).
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The following two lemmas illustrate the properties of independent sets and covering sets in the specific
conditions, which play a key role in the proof of the main theorem.

Lemma 3. (Liu and Zhang [6]) Let G be a graph and let H = G[T] such that §(H) > 1 and 1 < dg(x) < k-1
for every x € V(H) where T CV(G) and k > 2. Let Ty, ..., Tx—1 be a partition of the vertices of H satisfying
da(z) = j for each x € T; where we allow some T to be empty. If each component of H has a vertex of degree
at most k — 2 in G, then H has a mazimal independent set I and a covering set C =V (H) — I such that

k-1

k—1
(k—j)e; <> (k—2)(k = j)ij,
j=1

7

<

where ¢; = |CNT;| and i; = |INTy| forj=1,....k—1.

The following lemma is obtained by slightly modifying the Lemma 2.2 in [6] according to its proving process.

Lemma 4. (Liu and Zhang [6]) Let G be a graph and let H = G[T] such that dg(x) = k—1 for every x € V(H)
and no component of H is isomorphic to Ky where T C V(G) and k > 2. Then there exists an independent set
I and the covering set C =V (H) — I of H satisfying

7]

V()| < -

-

s
Il
—

(k7i+1)‘1<i>

and
1]

2

k
| < Z(ls—z’)‘l(i)

i=1
where I = {x € I,dy(x) =k —i} for 1 <i <k and Zf=1|l(i)| = |I].

2. PROOF OF MAIN RESULT

If G is complete, the result is directly yielded by means of §(G) > k. In what follows, we always assume that
G is not complete. Suppose that G satisfies the conditions of Theorem 1, but has no fractional k-factor. By
Lemma 2, there exist disjoint subsets S and T of V(G) satisfying

KIS| = KIT|+ Y de-s(x) = k|S|+ Y (dg—s(z) — k) < —1. (1)

zeT zeT

We select S and T' such that |T'| is minimum. Thus, we immediately get T' # 0, and dg_gs(z) < k— 1 for any
zeT.

Let ! be the number of the components of H' = G[T] which are isomorphic to Kj and let Ty = {x €
V(H")|dg-s(x) = 0}. Let H be the subgraph inferred from H' — T by deleting those | components isomorphic
to K. Let S’ be a set of vertices that contains exactly k — 1 vertices in each component of K in H'.

If |V(H)| = 0, then from (1) we obtain |S| < |To| +1 (or |S| < |To| +1 —1). We verify |To| +1 > 1 due
to |T| # 0. If |To| +1 = 1, then dg_g(z) + |S| > da(z) > 6(G) > k and dg_g(z) > k — |S| > k — 1, which
contradicts to dg_s(z) < k — 1 for any x € T'. Hence, we deduce (G — SUS’") > |Ty| +1 > 2 and

SuUS| To| +1—1+1(k - 1) I(k — 1)

e < | < o k-1

A repy sy To] +1—1 ST
cp UHTDGE =) ([T - (k- 1) k-1

|To| +1—1 To| +1—1 |To| +1—1
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k—1 k—1
_ <k+—=2k—1.
T Y T

=k
This contradicts with I'(G) > 2k — 1. It implies |V (H)| > 0.
Let H = Hy U Hy where H is the union of components of H which satisfies that dg_g(v) = k — 1 for each
vertex v € V(Hy) and Hy = H — H;. By means of Lemma 4, H; has a maximum independent set [; and the
covering set Cy = V(H;) — I; such that

i N
V(H)| < Yk =i+ 1)|10] - -, @

=1

and
1]

- Ta (3)

k
[TESS(EDIE
i=1

where 1) = {v € Iy, dy, (v) = k —i} for 1 <i < k and Yr_, [IO)] = |I,]. Let Tj = {v € V(Hy)|dg_s(v) = j}
for 1 < j < k — 1. Using the definitions of H and Hs, we verify that each component of Hy has a vertex of
degree at most k — 2 in G — S. According to Lemma 3, Hs has a maximal independent set I and the covering
set Cy = V(Hz) — I such that

k—1 k—1

(k= 4)e; <> (k—=2)(k = j)ij, (4)

j=1 j=1
where ¢; = |Co NT}| and i; = [, NTy| for every j = 1,....k—1. Set W = V(G) =S —T and U =
SUSUCLU(Ng(l;)NW))UCyU (Ng(I) N W). We yield

<

k—1 k
U] < ISI+l(k—1)+|01|+Zjij+2<¢—1)\z<i> 5)
Jj=1 i=1
and
k—1
i(G=U)>to+1+ 0]+ ij, (6)
j=1
where tg = |Ty|. When i(G — U) > 2, using the definition of I'(G), we have
Ul > I'(G)i(G - U) = I'(G). (7)

If i(G —U) = 1, then G[T] is a clique and |T| < k. Let d¢; = minyer{dg_s(v)} and set dg_g(ve) = de-
Thus, |T| — 1 <dy <k — 1. In view of (1), we deduce

|S| < k|T| — de_S<T) -1 < k|T| — d];:l|T| -1

and
k|T| —da|T| -1

k

det = da—s(ver) > 6(G) = |S| >k —[S| > k —
Therefore,
0> k2 —k|T| +dy(|T) — k) +1> k2 —k|T|+ (k=1)(|T| k) +1=k—|T|+1>2,

a contradiction. Therefore, (7) always established.
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Followed from (5)—(7), we yield

>
|
—

S|+ 1C1l = ) _(I'(G) = )i + I'(G)(to + 1) + I'(G)| 11|

j=1
k
S - 1)‘1@ —I(k—1) - I'(G). 8)
i=1
In light of k|T| — dg_s(T') > E|S| + 1, we have
k—1 k—1
Kto + kL + [V (Hy)|+ Y (k—j)ij + Y (k—j)e; > k|S|+ 1.
j=1 j=1
Combining with (8), we derive
k—1
V(HD)|+ (k= d)e; + KC| (9)
j=1

> (KI'(G) = kj — k+ j)ij + (kI'(G) = k)(to + 1) + kI'(G)|I1|

(k—1) — kI'(G) + 1.

k
— k> (- 1)‘1(1')
=1

In view of (2) and (3), we get

k
. E+1)I1®
[V(Hy)|+E|C] < Z ki+k7i+1)‘1(l) _ e+ DI (10)
By means of (4), (9) and (10), we have
k—1 k A
S (k= 2)(k = )iy + (K~ ki + k= i+ 1) 10 an
J=1 i=1

k—1
> (kI'(G) = kj — k+ j)ij + (KI'(G) = k)(to + 1) + kI'(G)| 11|

k

+<k+12>\f“’\ _k;(i_l)w — lk(k — 1) = kI'(G) + 1.

The following discussion is divided into two cases in terms of whether to + [ is zero.
Case 1. to + 1 > 1. In this case, by (11) and
(kI'(G) — k)(to +1) —lk(k—1) — kI'(G) + 1
> (KI'(G) — k) (to + 1) — (I + to)k(k — 1) — kI'(G) + 1
2

= (kI'(G) = k*)(to + 1) — kI'(G) + 1
>EI'NG) — k2 —kI'(G) + 1= —k> + 1,
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we have
k—1 ‘
k—j) zj+z ki+k—i+1)‘1(’) (12)
j=1 =
k— k
k+ 1)1
Zk[’ kj—k+j)ij+k1/(G)|11|—|—(+2)”—kZ(z’—l) — k241,
= i=1
In particular, if £y +1 > 2, then
(kI'(G) — k) (to +1) — lk(k — 1) —kI'(G) +1 > 2(kI'(G) — k?) — kI'(G) + 1 = kI'(G) — 2k* + 1
and
k— 1 k '
k—j zj+2(k2—ki+k—i+1)‘1(’) (13)
]:1 i=1
k—1 k
k+ 1)1 .
>3 (kI'(G) = kj — k + j)ij + kI'(G)| | + (2)“ kY (i— 1)]1@)
j=1 i=1
+ kI'(G) — 2K* + 1. (14)
Claim 1. If tg +1 > 1, then |I3| # 0.
Proof. Suppose |Iz| = 0. Then |I1| # 0 by |V(H)| > 0.
If tg + 1 > 2, then (13) becomes
k
, k+ 1)1
> (K —i+ 1)‘1@ — kI'(G) || — (%)" —kI'(G)+2k*—=1>0
i=1
and thus using & > 2 and I'(G) > 2k — 1, we deduce
0<Z —z—|—1‘] — (2k% - )u|—w—k(2k—1)+2k2—1
' 2
. IW|(k+1
:Z(—k2+k—i+1)‘l(’) —’M2+)+k—1
i=1
<k +k+k-1<0,
a contradiction.
Now, consider ¢y +{ =1 and (12) becomes
k
, k+ 1)1
Z(kQ—iH)’I@ — kI'(G)|I4] —Wwﬁ—l > 0. (15)

i=1
If |I;| =1, then |V(H7)| < k — 1 and we consider the following two circumstances.

~ to=1and [ =0. Then |V(T )| = [V + 1, 8| < HT| — de-s(T) = 1= k+|V(Hy)| - Land |S] < %2
Hence k < §(G) <0+ |S| < 2222 which contradicts to k > 2.
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~to=0and ! = 1. Then |V(T)| = |V(H1)| +k, k|S| < k|T| —dg_s(T) — 1 = |V(T)| — 1 and |S| < 2£=2
(which implies |S| < 1). Hence

SUS"UNg_s(I1)] 1+(k-1)+(k-1)
I'G) < | g-s = =2k —1
<G)_i(G—SUS’UNG_S(Il))71 2-1 k-1,

which contradicts to I'(G) > 2k — 1. It implies that [I;] > 2if to +1 = 1.
In light of (15), |I1| > 2, k> 2 and I'(G) > 2k — 1, we have

k (1)
> | _ gy kDY),
og;(k z+1)‘1 kI'(G)| 1| . TR
k )
2 @& (op2 _|I [(k+1) 2
<;(k i+ 1) |10 = (202 = k)| 1| - =+ k2 - 1
k 1)
:Z(—k2+k—i+1)‘l(i) —M2k+1)+k2—1<0.
1=1

The last inequality can be derived by discussing [I()| = 0 and |I(V)| > 1 respectively.

O
Claim 2. If to + 1 > 1, then |I;| # 0.
Proof. Suppose |I1] = 0. We yield |I2] # 0 by |V(H)| > 0, and hence k > 3.
If tg + 1 > 2, then (13) becomes
k—1
D (k= 2)(k — 5)i;
j=1
k—1
>N (KI'(G) —kj —k+35)ij + kI'(G) — 2k* + 1
j=1
k-1
> (kI'(G) = kj — k+ j)i; — k + 1.
j=1
Since
(k—=2)(k—j)—kI'(G)+kj+k—j
<(k—=2)(k—j) -2k +kj+2k—j
=k +j< kK +k-1,
we get —k? + 2k — 2 > 0, contradicting to k > 3.
Now, consider ¢y +{ = 1 and (12) becomes
k—1 k—1
(k—2)(k—4)i; =) (KI'(G) —kj—k+j)i; —k* + 1. (16)
=1

[

1

<.
Il

Set dmin = min{dg_s(x)|x € V(H2)}, then dyin € {1,...,k —2}. Let z € V(H3) such that dg_s(z) = din-
If |I3| = 1, then we consider the following two circumstances.
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—to=1and I =0. Then |V(T)| = |V(H2)|+ 1, k|S| < k|T| —de-s(T) — 1 < k+ |V(H2)|(k — dmin) — 1 and
S| < BV dmin) 1 ¢ ol (e ) ()1 ¢ SbG=D0=D1 e 1 Hence k < 8(G) < 04]S| < k—1,

a contradiction.
—to=0and ! =1. Then |V(T)| = |V(H2)| + k, k|S| < k|T| —dg-s(T) =1 < k+ |V(Ha3)|(k — dmin) — 1 and

|S| S k + |V(H2)|(: - dmin) -1 S k + (dmin + ]-)k(k - dmin) -1

1 1
- 2 1—— min 2——
— i+ (1= 7 Jdun 2~ ]

Hence, we acquire
2
|SUS/UNG75(Z)| . dmin - dmm donin +2_ %"’(k_ 1)+dmin

re) < '(G—SUS’UNG_S(z))—l_ 51

1 1
2 2 — = )dmi - — 41
kdmm ( k)dmm th——+

Set . )
v min) — 2 2— — min — - 1.
(i) = i + ( k) in + = 7+

Thus, max{¥(dmin)} = ¥(k — 3) and actually max{¥(dnin)} = ¥(k — 2) due to the range of variable dyy;y.

When d,;, = k — 2, we infer

1 1 1 1 1 3
< Lo _ L _ R N APAY _ 1 _ _ L _ a9
5] < = dimin + (1 ZC>dmm+2 r=—7k=2) +<1 k)(k 2)+2- =37
Due to k > 3, we acquire |S| < 2, and then
"UNg_ 2+ (k-1 k—2
’L(G—SUS/UNG,s(Z))—l 2—-1
which contradicts to I'(G) > 2k — 1. It’s summarized that |Io| > 2 if to +1 = 1.
Hence, we get
k—1 k—1
(k—=2)(k—5)i; — Y (kI'(G) — kj — k+j)i; < —2k* + 2k — 2,
j=1 j=1
which contradicts to (16). O
From Claims 1 and 2, we can see that [I;| > 0 and |I2| > 0. Applying |I2] > 1 yields
k—1 k—1
(k—2)(k—j)i;— Y (KI'(G)—kj—k+35)ij+k*—k+1<0,
j=1 j=1
we infer i i
k+ 1)1
Z(k2—ki+k—z’+1)‘ ’(G)\Il|+(7|—k21—1‘ k42
i=1
or .
_ k+1 I _
Z(kQ—ki+k—i+1)‘I(’) —k[’(G)\Il|—( ’+kZ ‘I(Z) +k—2>0. (17)
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In light of (17), k > 2 and I'(G) > 2k — 1, we obtain

(k+1 \IU)\

—(2k;2—k;)|11|— +k—2

+I<:Z (i—1) ‘I“

k
0< D (K —kith—i+1)
i=1

k
. a1 (B+ 1[I0
:Z(—k2+k—z+1))l<> —2”

i=1

+k—-2<0,

a contradiction.

Case 2. ty 4+ = 0. In this case, by (11) we deduce,

k—1 k
(k—2)(k - j)i; + > :(kz—ki+k—i+1)‘l(i) (18)
j=1 i=1
k—1 k
o (k+ 1) 1] o
> ! _ _ ) / NAarA i _ ()| _ !
> §‘:1:(k1 (G) = kj— k+3)i; + kI'(G) 1| + —— k ?:1:(1 1)\1 EI'(G) +1

Claim 3. If to +1 =0, then |I5| # 0.
Proof. Suppose |Iz| = 0. Then we infer [I;| # 0, |V(T)| = |V (Hy)| and k|S| < k|T| —dg-s(T) —1=|T| - 1. If
|[I;] =1, then |T| < k — 1 and |S] < IT\T—l <1—2.Thus, k <§(G) <[S|+ (k—1) < k— 2, a contradiction.

If |1, = 2, then |T| < 2k and [S] < T=2 <2 — L. Thus, from k < 8(G) < S|+ (k—1) <k+1— 1 we
verify 6(G) = k and |S| = 1. In this case, i(G — U) =2 where U = SUC, U (Ng(I1) N W), and

k
) ) [(1) )
U| < |S\+|01|+Z(i—1)‘1<2> k—i)‘l(l) [, Z ‘I(Z)
i=1
1V | W]
=1+ (k—D|L| - = =2k-1- <2k —1.
Hence,
I’(G)<|L|<2k—1
SWG-U)—-1° ’
which contradicts to I'(G) > 2k — 1. Thus, we have |I;| > 3.
Using (18), we derive
k k
, k+1)1)
Z(kQ—ki—l—k—i—kl)‘I(’) —kI’(G)\Iﬂ—%MJrkZ(i—l)‘ G)—1>0.  (19)
=1 i=1
In light of (19), I'(G) > 2k — 1, k > 2 and |I;]| > 3, we get
k
k+ 1)1
0< Y (K —i+1) (G)|11|—(f)|’+k1’(c)—1
=1
k
k+1)[ 10|
k2 —i4+ 1) 1D — (2% — k) (|| — 1 —(7—1
<2 (B -it) (26* = k)11 = 1) 5

k+1D)[IM
%M+2k2—k—1<0,

k
:Z(—kz2+k—i+1)’1(“ _

a contradiction. O
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Claim 4. If ¢, + 1 =0, then |;| # 0.
Proof. Suppose |I;| = 0. Then |I5] # 0 using |V(H)| > 0, and thus k£ > 3. In terms of (18), we infer

k—1
>k =2)(k - j)i;
j=1
k—1
>N (KkI'(G) —kj—k+j)i; —kI'(G)+1
j=1
k—1

(—kj—k+35)i; +kI'(G)(|L2] —1)+1

(]

> .
[
T

(—kj—k+75)i;+ (2> — k) (L] — 1) +1

(]

> .
|
— e

(2k* — kj — 2k + j)i; — 2k* + k + 1.

<.
Il
—

Note that (k —2)(k —j) —2k*> + kj+2k —j=—k>+j < —k>+ k- 1.
Set dmin and z € V(Hs) as in Claim 2, thus dyi, € {1,...,k — 2} and dg_s(2) = dmin. If |I2] = 1, then
k|S| < k|T| — dg—s(T) — 1 < |T|(k — dmin) — 1 and |S| < \T\(k—dman)—l \Izl(k—l)(llz—dmm)—l (k—1)(k— dmm) 1,

Hence k < 6(G) < diin + |S] < dpin + E=DE dmin)=1 — k14 dyn i Lo p k2 1 —k—f a
contradiction.
Hence, we get |I3| > 2 and
k—1 k—1
(B> + k=)L => (K +k—1)i; > Y (=k*+j)i;
j=1 j=1
k—1
=Y (k=2)(k —j)i; — Y (2K — kj — 2k + j)i;
j=1
> —2k% +k+ 1.

If [I5| > 3, then —3k% + 3k —3 > —2k? + k + 1, i.e., —k? + 2k — 4 > 0, a contradiction. Hence, |I3| = 2 and
we set di and ds as the degrees in G — S of these two vertices in Iy (assume that dq < do and thus d; < k — 2).
We get (—k2 +d1) + (—k* + da) = Y5~ (—k? +j)z'] > —2k% + k + 1. Hence, we infer dy +dy > k + 2.

We check that || < {BFDk=d) (ot )(h=da) =1 1y(x — 17) = 2 where U = S U Cy U (Ng(I2) N W), and

Ul < [S]+1Ca| + [Na(I2) N W]

k—1
B (di+1)(k—di)+ (da+1)(k—d2)—1
= . +dy +da

_(_1p 1 L 1 _ L
_< kd1+d1<2 k>)+( kd2+d2(2 k)>+2 -
1 1 1 1 1
Y(dy,dy) = (—kd% +dy (2 — k)) + <—kd§ +d2<2 — k)) +2- 2

Set
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Clearly, max Y(di,d2) = T(k — 2,k — 1). When (dy,ds) = (k — 2,k — 1), we get |S| < 2E=DHh=l _ 33
Thus, |S| < 2 due to k > 3.
Therefore, |U| < |S|+ |Ca| + [Na(Io) "W | <2+ (k—2)+ (k—1) =2k — 1 and
2k—1<I’(G)<L<2k—1
SiG-U)—1- ’
which leads to a contradiction. O

From Claims 3 and 4, we can see that |I1| > 1 and |I3]| > 1.
Claim 5. |Il| + ‘Ig| > 3.

Proof. Otherwise, we have |I1| + |I2| = 2, ie., |[I1| = |Ia] = 1. We get |T| < (k—1)+ (k—1) = 2k — 2 and
kS| < k|T|—dg-s(T)—1 < (k—1)4(d3+1)(k—ds)—1, where I = {2’} and d3 = dg_s(2’) (d3 € {1,...,k—2}).
Moreover, |S| < M and

k+ (ds + 1)(k — ds) — 2

k<6(G) <|S]+ds < p +ds
1, 1 2
= kd3+<2 k)d3+2 -

1 ) 1 2 4
< ——(k-— - — - = = S
<—2(k 2)+(2 k)(k 2)+2- 2 =k+l-o,

we have k > 4.
We acquire i(G — U) =2 where U = SUC; U (Ng(I1) N W)U Cy U (Ng(I2) N W), and

k—1
+ Zjij
j=1

1, 1 2
+(k—1)+d3——kd3+(2—k>d3+k+1—k~

k
U1 <181+ ICa] + Y (0 = D
i=1

_ ki (ds + 1)(k —dg) =2
= k

Set

k

Then max{Z(d3)} = Z(k — 1) and actually max{Z(ds)} = Z(k — 2) due to the range d3. When ds = k — 2,
we have

1 1 2
E(ds) = —d3 + (2_ k>d3+k+1—-

kit (ds+1)(k—ds)—2 k+2(k—1)—2
k - k -

4
<
15| < 34

and thus [S| < 2 due to k > 4.
Therefore,

k k—1
U< 18I+ 161 + Y60 = DD+ jis <2+ (= 1)+ (b= 2) = 2% — 1
i=1 =1

and
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Ul
I'G) < S Ul S VA
(@) < i(G-U)—1" ’
which contradicts to I'(G) > 2k — 1. O
The final discussion is divided into two subcases.
Case 2.1. |I5| > 2.
In terms of |I] > 2, we deduce
k—1 k—1
D (RI'(G) = kj =k +4)i; > > (k—2)(k — j)ij + 2k — 2k + 2. (20)

=1 1

<.
<.
Il

Combining (18) and (20), one has

k
> (K = ki k=i 1)1 (21)
i=1
e+ 1)1 k _
> kI'(G)| L | + (2)“ — kY (i- 1)’1@) — kI'(G) 4 2k* — 2k + 3.
i=1
In light of (21), |[I;] > 1 and I'(G) > 2k — 1, we have
1]
0<Z —z+1) — (k+ D)5 — kI'(G)(B] — 1) - 2% + 2k - 3
1]
< Z —i+1) ’I@ — (k4 1) = (2K~ B) (|| — 1) — 2k + 2k — 3
ikl
—Z (<K% +k =i+ 1)[19] = (k41 +k—-3<0,
a contradiction.
Case 2.2. |[;| > 2.
In terms of |I3] > 1, we deduce
k—1 k—1
S RI(G) = kj—k+ )iy > > (k—2)(k—j)ij + £ —k+ 1.
j=1 j=1
Combining the above inequality into (18), one gets
k: .
> (K = ki k =i+ 1)[ 1 (22)

i=1

k+ 1)[1¢
(+2)” —kI'(G) + k> — k+2.

k
—kZz—l ‘I

In light of (22), |I;| > 2 and I'(G) > 2k — 1, we derive

> kI'(G) || +




ISOLATED TOUGHNESS VARIANT AND FRACTIONAL K-FACTOR 3687

7
o<2 H—l‘l(” (k+1)|2} EI(GY(L| —1) — K>+ k—2
1]
<§: z+1‘ﬂ” e+ 1) (22— B (- 1) — K2+ k-2
4 NEisd
:Z(—kg—i—k:—i—i-l)‘l(” —(k+ 1)+ -2 <0,
i=1
a contradiction
Therefore, we complete the proof of the desired result. O

3. CONCLUSION AND DISCUSSION

In this contribution, we obtain the tight I'(G) bound for a graph to admit fractional k-factor. Since isolation
toughness plays a key role in network security and the fractional factor is a characterization of fractional flow
in data transmission networks, we believe that the theoretical conclusion determined in our paper has certain
guiding significance for the practical application of network engineering. Furthermore, Theorem 1 has potential
to be generalized in other fractional factor settings, as well as fractional deleted graph and fractional critical
graph frameworks. Therefore, we propose the following open problems (the explanation of these concepts can
be found in the relevant literatures).

Problem 1. What is the tight I’(G) bound for fractional (g, f,n)-critical graphs?

Problem 2. What is the tight I'(G) bound for fractional (g, f,m)-deleted graphs?
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