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ISOLATED TOUGHNESS VARIANT AND FRACTIONAL 𝑘-FACTOR

Zhengyue He, Li Liang and Wei Gao*

Abstract. Isolated toughness is a crucial parameter considered in network security which characterizes
the vulnerability of the network from the perspective of graph topology. 𝐼 ′(𝐺) is the unique variant of
isolated toughness which was introduced in 2001. This work investigates the correlation of 𝐼 ′(𝐺) and
the existence of fractional factor. It is proved that a graph 𝐺 with 𝛿(𝐺) ≥ 𝑘 admits fraction 𝑘-factor
if 𝐼 ′(𝐺) > 2𝑘 − 1, where 𝑘 ≥ 2 is an integer. A counterexample is presented to show the sharpness of
𝐼 ′(𝐺) bound.
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1. Introduction

This work only considers simple and finite graphs. Let 𝐺 be a graph with vertex set 𝑉 (𝐺) and edge set 𝐸(𝐺).
We denote 𝑑𝐺(𝑣) and 𝑁𝐺(𝑣) (simply by 𝑑(𝑣) and 𝑁(𝑣)) as the degree and the neighborhood of 𝑣 ∈ 𝑉 (𝐺),
respectively. For any 𝑆 ⊆ 𝑉 (𝐺), 𝐺[𝑆] denotes the subgraph of 𝐺 induced by 𝑆, and set 𝐺− 𝑆 = 𝐺[𝑉 (𝐺) ∖ 𝑆].
Set 𝛿(𝐺) = min𝑣∈𝑉 (𝐺){𝑑(𝑣)} as the minimum degree of 𝐺. The notations and terminologies used but undefined
in this paper can be found in Bondy and Mutry [1].

Let 𝑘 be a positive integer and ℎ : 𝐸(𝐺) → [0, 1] be an indicator function defined on the edge set. A fractional
𝑘-factor is a spanning subgraph induced by 𝐸ℎ = {𝑒 ∈ 𝐸(𝐺)|ℎ(𝑒) > 0} if 𝑑ℎ

𝐺(𝑣) =
∑︀

𝑣′∈𝑁(𝑣) ℎ(𝑣𝑣′) = 𝑘 for each
vertex 𝑣. We say graph 𝐺 admits a fractional factor if such indictor function ℎ exists.

Inspired by the idea of toughness, Yang et al. [8] introduced the notion of isolated toughness which is formalized
as follows: 𝐼(𝐺) = +∞ if 𝐺 is a complete graph; otherwise,

𝐼(𝐺) = min
{︂

|𝑆|
𝑖(𝐺− 𝑆)

⃒⃒⃒
𝑆 ⊂ 𝑉 (𝐺), 𝑖(𝐺− 𝑆) ≥ 2

}︂
,

where 𝑖(𝐺− 𝑆) is the number of isolated vertices in 𝐺− 𝑆. A variant of isolated toughness was introduced by
Zhang and Liu [10] which is formulated as

𝐼 ′(𝐺) = min
{︂

|𝑆|
𝑖(𝐺− 𝑆)− 1

⃒⃒⃒
𝑆 ⊂ 𝑉 (𝐺), 𝑖(𝐺− 𝑆) ≥ 2

}︂
if 𝐺 is not a complete graph, and otherwise 𝐼 ′(𝐺) = +∞.
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Due to the theoretical importance and significant application of such parameters in specific fields, the inves-
tigation of isolation toughness in the setting of extended fractional factors (e.g., fractional (𝑔, 𝑓)-factor, all
fractional factors, component factor), and in the setting of fractional deleted graph and fractional critical graph
has attracted the attention from scholars. Ma and Liu [7] confirmed that a graph 𝐺 admits a fractional 𝑘-factor
if 𝛿(𝐺) ≥ 𝑘 and 𝐼(𝐺) ≥ 𝑘. Gao and Wang [2] determined an 𝐼(𝐺) bound for fractional (𝑔, 𝑓, 𝑛)-critical graphs.
Gao et al. [3] studied the 𝐼(𝐺) condition for a graph which admits the component factor when the given num-
bers of edges are missing. Gao et al. [4] considered the isolated toughness parameter in 5-dimensional space,
and computed the expression of detailed space structures. Zhou et al. [14] investigated the relationship between
isolated toughness and path factors. More results on this topic and other extensions can be referred to [9,11–13].

However, these extant results almost focus on original isolated toughness 𝐼(𝐺), and there are few advances
on 𝐼 ′(𝐺). Early studies found that 𝐼(𝐺) and 𝐼 ′(𝐺) have obvious differences in parameter characteristics, while
it is observed that most of the previously confirmed results for 𝐼(𝐺) are still open when considering 𝐼 ′(𝐺)
variant. For instance, the sharp 𝐼(𝐺) bound for a graph with fractional 𝑘-factor was completely solved in 2006,
and unfortunately, the tight 𝐼 ′(𝐺) condition for the existence of fractional 𝑘-factor is open till now. This tragic
situation motivates us to do further in-depth research on 𝐼 ′(𝐺).

In this paper, we study the correlation between 𝐼 ′(𝐺) and fractional 𝑘-factor. Our main result can be for-
malized in the following theorem.

Theorem 1. Let 𝐺 be a graph and 𝑘 ≥ 2 be an integer. If 𝛿(𝐺) ≥ 𝑘 and 𝐼 ′(𝐺) > 2𝑘−1, then 𝐺 has a fractional
𝑘-factor.

Obviously, 𝛿(𝐺) ≥ 𝑘 is tight for the existence of fractional 𝑘-factor in terms of its definition. The following
example reveals the sharpness of 𝐼 ′(𝐺) bound in Theorem 1. Consider 𝐺 = (2𝐾𝑘) ∨𝐾1 where ” ∨ ” means a
vertex in 𝐾1 adjacent to all vertices in 2𝐾𝑘. Thus, we infer

𝐼 ′(𝐺) = 2𝑘 − 1.

Set 𝑆 = 𝑉 (𝐾1) and 𝑇 = 𝑉 (2𝐾𝑘). We verify

𝑘|𝑆| − 𝑘|𝑇 |+
∑︁
𝑥∈𝑇

𝑑𝐺−𝑆(𝑥) = 𝑘 − 𝑘(2𝑘) + 2𝑘(𝑘 − 1) = −𝑘 < 0,

which implies that 𝐺 has no fractional 𝑘-factor in view of Lemma 1.
To prove Theorem 1, the following lemma which characterises the necessary and sufficient condition of

fractional 𝑘-factor is required.

Lemma 1. ( Liu and Zhang [5]) Let 𝑘 ≥ 1 be an integer. Then 𝐺 has a fractional 𝑘-factor if and only if

𝑘|𝑆| − 𝑘|𝑇 |+
∑︁
𝑥∈𝑇

𝑑𝐺−𝑆(𝑥) ≥ 0

holds for any 𝑆 ⊆ 𝑉 (𝐺), where 𝑇 = {𝑥 ∈ 𝑉 (𝐺)− 𝑆|𝑑𝐺−𝑆(𝑥) ≤ 𝑘}.

Obviously, for a given subset 𝑆 of 𝑉 (𝐺), the subset 𝑇 in Lemma 1 can be equivalently stated by 𝑇 = {𝑥 ∈
𝑉 (𝐺)− 𝑆|𝑑𝐺−𝑆(𝑥) ≤ 𝑘 − 1}. It is worthy to emphasize that Lemma 1 has its equal statement as follows.

Lemma 2. (Liu and Zhang [5]) Let 𝑘 ≥ 1 be an integer. Then 𝐺 has a fractional 𝑘-factor if and only if

𝑘|𝑆| − 𝑘|𝑇 |+
∑︁
𝑥∈𝑇

𝑑𝐺−𝑆(𝑥) ≥ 0

holds for any disjoint subsets 𝑆, 𝑇 ⊆ 𝑉 (𝐺).
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The following two lemmas illustrate the properties of independent sets and covering sets in the specific
conditions, which play a key role in the proof of the main theorem.

Lemma 3. (Liu and Zhang [6]) Let 𝐺 be a graph and let 𝐻 = 𝐺[𝑇 ] such that 𝛿(𝐻) ≥ 1 and 1 ≤ 𝑑𝐺(𝑥) ≤ 𝑘− 1
for every 𝑥 ∈ 𝑉 (𝐻) where 𝑇 ⊆ 𝑉 (𝐺) and 𝑘 ≥ 2. Let 𝑇1, . . . , 𝑇𝑘−1 be a partition of the vertices of 𝐻 satisfying
𝑑𝐺(𝑥) = 𝑗 for each 𝑥 ∈ 𝑇𝑗 where we allow some 𝑇𝑗 to be empty. If each component of 𝐻 has a vertex of degree
at most 𝑘 − 2 in 𝐺, then 𝐻 has a maximal independent set 𝐼 and a covering set 𝐶 = 𝑉 (𝐻)− 𝐼 such that

𝑘−1∑︁
𝑗=1

(𝑘 − 𝑗)𝑐𝑗 ≤
𝑘−1∑︁
𝑗=1

(𝑘 − 2)(𝑘 − 𝑗)𝑖𝑗 ,

where 𝑐𝑗 = |𝐶 ∩ 𝑇𝑗 | and 𝑖𝑗 = |𝐼 ∩ 𝑇𝑗 | for 𝑗 = 1, . . . , 𝑘 − 1.

The following lemma is obtained by slightly modifying the Lemma 2.2 in [6] according to its proving process.

Lemma 4. (Liu and Zhang [6]) Let 𝐺 be a graph and let 𝐻 = 𝐺[𝑇 ] such that 𝑑𝐺(𝑥) = 𝑘−1 for every 𝑥 ∈ 𝑉 (𝐻)
and no component of 𝐻 is isomorphic to 𝐾𝑘 where 𝑇 ⊆ 𝑉 (𝐺) and 𝑘 ≥ 2. Then there exists an independent set
𝐼 and the covering set 𝐶 = 𝑉 (𝐻)− 𝐼 of 𝐻 satisfying

|𝑉 (𝐻)| ≤
𝑘∑︁

𝑖=1

(𝑘 − 𝑖 + 1)
⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
−

⃒⃒
𝐼(1)

⃒⃒
2

and

|𝐶| ≤
𝑘∑︁

𝑖=1

(𝑘 − 𝑖)
⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
−

⃒⃒
𝐼(1)

⃒⃒
2

where 𝐼(𝑖) = {𝑥 ∈ 𝐼, 𝑑𝐻(𝑥) = 𝑘 − 𝑖} for 1 ≤ 𝑖 ≤ 𝑘 and
∑︀𝑘

𝑖=1|𝐼(𝑖)| = |𝐼|.

2. Proof of main result

If 𝐺 is complete, the result is directly yielded by means of 𝛿(𝐺) ≥ 𝑘. In what follows, we always assume that
𝐺 is not complete. Suppose that 𝐺 satisfies the conditions of Theorem 1, but has no fractional 𝑘-factor. By
Lemma 2, there exist disjoint subsets 𝑆 and 𝑇 of 𝑉 (𝐺) satisfying

𝑘|𝑆| − 𝑘|𝑇 |+
∑︁
𝑥∈𝑇

𝑑𝐺−𝑆(𝑥) = 𝑘|𝑆|+
∑︁
𝑥∈𝑇

(𝑑𝐺−𝑆(𝑥)− 𝑘) ≤ −1. (1)

We select 𝑆 and 𝑇 such that |𝑇 | is minimum. Thus, we immediately get 𝑇 ̸= ∅, and 𝑑𝐺−𝑆(𝑥) ≤ 𝑘− 1 for any
𝑥 ∈ 𝑇 .

Let 𝑙 be the number of the components of 𝐻 ′ = 𝐺[𝑇 ] which are isomorphic to 𝐾𝑘 and let 𝑇0 = {𝑥 ∈
𝑉 (𝐻 ′)|𝑑𝐺−𝑆(𝑥) = 0}. Let 𝐻 be the subgraph inferred from 𝐻 ′ − 𝑇0 by deleting those 𝑙 components isomorphic
to 𝐾𝑘. Let 𝑆′ be a set of vertices that contains exactly 𝑘 − 1 vertices in each component of 𝐾𝑘 in 𝐻 ′.

If |𝑉 (𝐻)| = 0, then from (1) we obtain |𝑆| < |𝑇0| + 𝑙 (or |𝑆| ≤ |𝑇0| + 𝑙 − 1). We verify |𝑇0| + 𝑙 ≥ 1 due
to |𝑇 | ̸= 0. If |𝑇0| + 𝑙 = 1, then 𝑑𝐺−𝑆(𝑥) + |𝑆| ≥ 𝑑𝐺(𝑥) ≥ 𝛿(𝐺) ≥ 𝑘 and 𝑑𝐺−𝑆(𝑥) ≥ 𝑘 − |𝑆| > 𝑘 − 1, which
contradicts to 𝑑𝐺−𝑆(𝑥) ≤ 𝑘 − 1 for any 𝑥 ∈ 𝑇 . Hence, we deduce 𝑖(𝐺− 𝑆 ∪ 𝑆′) ≥ |𝑇0|+ 𝑙 ≥ 2 and

𝐼 ′(𝐺) ≤ |𝑆 ∪ 𝑆′|
𝑖(𝐺− 𝑆 − 𝑆′)− 1

≤ |𝑇0|+ 𝑙 − 1 + 𝑙(𝑘 − 1)
|𝑇0|+ 𝑙 − 1

= 1 +
𝑙(𝑘 − 1)

|𝑇0|+ 𝑙 − 1

≤ 1 +
(𝑙 + |𝑇0|)(𝑘 − 1)
|𝑇0|+ 𝑙 − 1

= 1 +
(𝑙 + |𝑇0| − 1)(𝑘 − 1)

|𝑇0|+ 𝑙 − 1
+

𝑘 − 1
|𝑇0|+ 𝑙 − 1
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= 𝑘 +
𝑘 − 1

|𝑇0|+ 𝑙 − 1
≤ 𝑘 +

𝑘 − 1
2− 1

= 2𝑘 − 1.

This contradicts with 𝐼 ′(𝐺) > 2𝑘 − 1. It implies |𝑉 (𝐻)| > 0.
Let 𝐻 = 𝐻1 ∪𝐻2 where 𝐻1 is the union of components of 𝐻 which satisfies that 𝑑𝐺−𝑆(𝑣) = 𝑘 − 1 for each

vertex 𝑣 ∈ 𝑉 (𝐻1) and 𝐻2 = 𝐻 −𝐻1. By means of Lemma 4, 𝐻1 has a maximum independent set 𝐼1 and the
covering set 𝐶1 = 𝑉 (𝐻1)− 𝐼1 such that

|𝑉 (𝐻1)| ≤
𝑘∑︁

𝑖=1

(𝑘 − 𝑖 + 1)
⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
−

⃒⃒
𝐼(1)

⃒⃒
2

, (2)

and

|𝐶1| ≤
𝑘∑︁

𝑖=1

(𝑘 − 𝑖)
⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
−

⃒⃒
𝐼(1)

⃒⃒
2

, (3)

where 𝐼(𝑖) = {𝑣 ∈ 𝐼1, 𝑑𝐻1(𝑣) = 𝑘 − 𝑖} for 1 ≤ 𝑖 ≤ 𝑘 and
∑︀𝑘

𝑖=1 |𝐼(𝑖)| = |𝐼1|. Let 𝑇𝑗 = {𝑣 ∈ 𝑉 (𝐻2)|𝑑𝐺−𝑆(𝑣) = 𝑗}
for 1 ≤ 𝑗 ≤ 𝑘 − 1. Using the definitions of 𝐻 and 𝐻2, we verify that each component of 𝐻2 has a vertex of
degree at most 𝑘 − 2 in 𝐺− 𝑆. According to Lemma 3, 𝐻2 has a maximal independent set 𝐼2 and the covering
set 𝐶2 = 𝑉 (𝐻2)− 𝐼2 such that

𝑘−1∑︁
𝑗=1

(𝑘 − 𝑗)𝑐𝑗 ≤
𝑘−1∑︁
𝑗=1

(𝑘 − 2)(𝑘 − 𝑗)𝑖𝑗 , (4)

where 𝑐𝑗 = |𝐶2 ∩ 𝑇𝑗 | and 𝑖𝑗 = |𝐼2 ∩ 𝑇𝑗 | for every 𝑗 = 1, . . . , 𝑘 − 1. Set 𝑊 = 𝑉 (𝐺) − 𝑆 − 𝑇 and 𝑈 =
𝑆 ∪ 𝑆′ ∪ 𝐶1 ∪ (𝑁𝐺(𝐼1) ∩𝑊 )) ∪ 𝐶2 ∪ (𝑁𝐺(𝐼2) ∩𝑊 ). We yield

|𝑈 | ≤ |𝑆|+ 𝑙(𝑘 − 1) + |𝐶1|+
𝑘−1∑︁
𝑗=1

𝑗𝑖𝑗 +
𝑘∑︁

𝑖=1

(𝑖− 1)
⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
(5)

and

𝑖(𝐺− 𝑈) ≥ 𝑡0 + 𝑙 + |𝐼1|+
𝑘−1∑︁
𝑗=1

𝑖𝑗 , (6)

where 𝑡0 = |𝑇0|. When 𝑖(𝐺− 𝑈) ≥ 2, using the definition of 𝐼 ′(𝐺), we have

|𝑈 | ≥ 𝐼 ′(𝐺)𝑖(𝐺− 𝑈)− 𝐼 ′(𝐺). (7)

If 𝑖(𝐺 − 𝑈) = 1, then 𝐺[𝑇 ] is a clique and |𝑇 | < 𝑘. Let 𝑑𝑐𝑙 = min𝑣∈𝑇 {𝑑𝐺−𝑆(𝑣)} and set 𝑑𝐺−𝑆(𝑣𝑐𝑙) = 𝑑𝑐𝑙.
Thus, |𝑇 | − 1 ≤ 𝑑𝑐𝑙 ≤ 𝑘 − 1. In view of (1), we deduce

|𝑆| ≤ 𝑘|𝑇 | − 𝑑𝐺−𝑆(𝑇 )− 1
𝑘

≤ 𝑘|𝑇 | − 𝑑𝑐𝑙|𝑇 | − 1
𝑘

and

𝑑𝑐𝑙 = 𝑑𝐺−𝑆(𝑣𝑐𝑙) ≥ 𝛿(𝐺)− |𝑆| ≥ 𝑘 − |𝑆| ≥ 𝑘 − 𝑘|𝑇 | − 𝑑𝑐𝑙|𝑇 | − 1
𝑘

·

Therefore,

0 ≥ 𝑘2 − 𝑘|𝑇 |+ 𝑑𝑐𝑙(|𝑇 | − 𝑘) + 1 ≥ 𝑘2 − 𝑘|𝑇 |+ (𝑘 − 1)(|𝑇 | − 𝑘) + 1 = 𝑘 − |𝑇 |+ 1 ≥ 2,

a contradiction. Therefore, (7) always established.
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Followed from (5)–(7), we yield

|𝑆|+ |𝐶1| ≥
𝑘−1∑︁
𝑗=1

(𝐼 ′(𝐺)− 𝑗)𝑖𝑗 + 𝐼 ′(𝐺)(𝑡0 + 𝑙) + 𝐼 ′(𝐺)|𝐼1|

−
𝑘∑︁

𝑖=1

(𝑖− 1)
⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
− 𝑙(𝑘 − 1)− 𝐼 ′(𝐺). (8)

In light of 𝑘|𝑇 | − 𝑑𝐺−𝑆(𝑇 ) ≥ 𝑘|𝑆|+ 1, we have

𝑘𝑡0 + 𝑘𝑙 + |𝑉 (𝐻1)|+
𝑘−1∑︁
𝑗=1

(𝑘 − 𝑗)𝑖𝑗 +
𝑘−1∑︁
𝑗=1

(𝑘 − 𝑗)𝑐𝑗 ≥ 𝑘|𝑆|+ 1.

Combining with (8), we derive

|𝑉 (𝐻1)|+
𝑘−1∑︁
𝑗=1

(𝑘 − 𝑗)𝑐𝑗 + 𝑘|𝐶1| (9)

≥
𝑘−1∑︁
𝑗=1

(𝑘𝐼 ′(𝐺)− 𝑘𝑗 − 𝑘 + 𝑗)𝑖𝑗 + (𝑘𝐼 ′(𝐺)− 𝑘)(𝑡0 + 𝑙) + 𝑘𝐼 ′(𝐺)|𝐼1|

− 𝑘

𝑘∑︁
𝑖=1

(𝑖− 1)
⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
− 𝑙𝑘(𝑘 − 1)− 𝑘𝐼 ′(𝐺) + 1.

In view of (2) and (3), we get

|𝑉 (𝐻1)|+ 𝑘|𝐶1| ≤
𝑘∑︁

𝑖=1

(︀
𝑘2 − 𝑘𝑖 + 𝑘 − 𝑖 + 1

)︀⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
−

(𝑘 + 1)
⃒⃒
𝐼(1)

⃒⃒
2

· (10)

By means of (4), (9) and (10), we have

𝑘−1∑︁
𝑗=1

(𝑘 − 2)(𝑘 − 𝑗)𝑖𝑗 +
𝑘∑︁

𝑖=1

(︀
𝑘2 − 𝑘𝑖 + 𝑘 − 𝑖 + 1

)︀⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
(11)

≥
𝑘−1∑︁
𝑗=1

(𝑘𝐼 ′(𝐺)− 𝑘𝑗 − 𝑘 + 𝑗)𝑖𝑗 + (𝑘𝐼 ′(𝐺)− 𝑘)(𝑡0 + 𝑙) + 𝑘𝐼 ′(𝐺)|𝐼1|

+
(𝑘 + 1)

⃒⃒
𝐼(1)

⃒⃒
2

− 𝑘

𝑘∑︁
𝑖=1

(𝑖− 1)
⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
− 𝑙𝑘(𝑘 − 1)− 𝑘𝐼 ′(𝐺) + 1.

The following discussion is divided into two cases in terms of whether 𝑡0 + 𝑙 is zero.

Case 1. 𝑡0 + 𝑙 ≥ 1. In this case, by (11) and

(𝑘𝐼 ′(𝐺)− 𝑘)(𝑡0 + 𝑙)− 𝑙𝑘(𝑘 − 1)− 𝑘𝐼 ′(𝐺) + 1
≥ (𝑘𝐼 ′(𝐺)− 𝑘)(𝑡0 + 𝑙)− (𝑙 + 𝑡0)𝑘(𝑘 − 1)− 𝑘𝐼 ′(𝐺) + 1
=

(︀
𝑘𝐼 ′(𝐺)− 𝑘2

)︀
(𝑡0 + 𝑙)− 𝑘𝐼 ′(𝐺) + 1

≥ 𝑘𝐼 ′(𝐺)− 𝑘2 − 𝑘𝐼 ′(𝐺) + 1 = −𝑘2 + 1,
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we have

𝑘−1∑︁
𝑗=1

(𝑘 − 2)(𝑘 − 𝑗)𝑖𝑗 +
𝑘∑︁

𝑖=1

(︀
𝑘2 − 𝑘𝑖 + 𝑘 − 𝑖 + 1

)︀⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
(12)

≥
𝑘−1∑︁
𝑗=1

(𝑘𝐼 ′(𝐺)− 𝑘𝑗 − 𝑘 + 𝑗)𝑖𝑗 + 𝑘𝐼 ′(𝐺)|𝐼1|+
(𝑘 + 1)

⃒⃒
𝐼(1)

⃒⃒
2

− 𝑘

𝑘∑︁
𝑖=1

(𝑖− 1)
⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
− 𝑘2 + 1.

In particular, if 𝑡0 + 𝑙 ≥ 2, then

(𝑘𝐼 ′(𝐺)− 𝑘)(𝑡0 + 𝑙)− 𝑙𝑘(𝑘 − 1)− 𝑘𝐼 ′(𝐺) + 1 ≥ 2(𝑘𝐼 ′(𝐺)− 𝑘2)− 𝑘𝐼 ′(𝐺) + 1 = 𝑘𝐼 ′(𝐺)− 2𝑘2 + 1

and

𝑘−1∑︁
𝑗=1

(𝑘 − 2)(𝑘 − 𝑗)𝑖𝑗 +
𝑘∑︁

𝑖=1

(𝑘2 − 𝑘𝑖 + 𝑘 − 𝑖 + 1)
⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
(13)

≥
𝑘−1∑︁
𝑗=1

(𝑘𝐼 ′(𝐺)− 𝑘𝑗 − 𝑘 + 𝑗)𝑖𝑗 + 𝑘𝐼 ′(𝐺)|𝐼1|+
(𝑘 + 1)

⃒⃒
𝐼(1)

⃒⃒
2

− 𝑘

𝑘∑︁
𝑖=1

(𝑖− 1)
⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
+ 𝑘𝐼 ′(𝐺)− 2𝑘2 + 1. (14)

Claim 1. If 𝑡0 + 𝑙 ≥ 1, then |𝐼2| ≠ 0.

Proof. Suppose |𝐼2| = 0. Then |𝐼1| ≠ 0 by |𝑉 (𝐻)| > 0.
If 𝑡0 + 𝑙 ≥ 2, then (13) becomes

𝑘∑︁
𝑖=1

(︀
𝑘2 − 𝑖 + 1

)︀⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
− 𝑘𝐼 ′(𝐺)|𝐼1| −

(𝑘 + 1)
⃒⃒
𝐼(1)

⃒⃒
2

− 𝑘𝐼 ′(𝐺) + 2𝑘2 − 1 ≥ 0

and thus using 𝑘 ≥ 2 and 𝐼 ′(𝐺) > 2𝑘 − 1, we deduce

0 <

𝑘∑︁
𝑖=1

(︀
𝑘2 − 𝑖 + 1

)︀⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
−

(︀
2𝑘2 − 𝑘

)︀
|𝐼1| −

⃒⃒
𝐼(1)

⃒⃒
(𝑘 + 1)
2

− 𝑘(2𝑘 − 1) + 2𝑘2 − 1

=
𝑘∑︁

𝑖=1

(︀
−𝑘2 + 𝑘 − 𝑖 + 1

)︀⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
−

⃒⃒
𝐼(1)

⃒⃒
(𝑘 + 1)
2

+ 𝑘 − 1

< −𝑘2 + 𝑘 + 𝑘 − 1 < 0,

a contradiction.
Now, consider 𝑡0 + 𝑙 = 1 and (12) becomes

𝑘∑︁
𝑖=1

(︀
𝑘2 − 𝑖 + 1

)︀⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
− 𝑘𝐼 ′(𝐺)|𝐼1| −

(𝑘 + 1)
⃒⃒
𝐼(1)

⃒⃒
2

+ 𝑘2 − 1 ≥ 0. (15)

If |𝐼1| = 1, then |𝑉 (𝐻1)| ≤ 𝑘 − 1 and we consider the following two circumstances.

– 𝑡0 = 1 and 𝑙 = 0. Then |𝑉 (𝑇 )| = |𝑉 (𝐻1)|+ 1, 𝑘|𝑆| ≤ 𝑘|𝑇 | − 𝑑𝐺−𝑆(𝑇 )− 1 = 𝑘 + |𝑉 (𝐻1)| − 1 and |𝑆| ≤ 2𝑘−2
𝑘 .

Hence 𝑘 ≤ 𝛿(𝐺) ≤ 0 + |𝑆| ≤ 2𝑘−2
𝑘 , which contradicts to 𝑘 ≥ 2.
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– 𝑡0 = 0 and 𝑙 = 1. Then |𝑉 (𝑇 )| = |𝑉 (𝐻1)| + 𝑘, 𝑘|𝑆| ≤ 𝑘|𝑇 | − 𝑑𝐺−𝑆(𝑇 ) − 1 = |𝑉 (𝑇 )| − 1 and |𝑆| ≤ 2𝑘−2
𝑘

(which implies |𝑆| ≤ 1). Hence

𝐼 ′(𝐺) ≤ |𝑆 ∪ 𝑆′ ∪𝑁𝐺−𝑆(𝐼1)|
𝑖(𝐺− 𝑆 ∪ 𝑆′ ∪𝑁𝐺−𝑆(𝐼1))− 1

=
1 + (𝑘 − 1) + (𝑘 − 1)

2− 1
= 2𝑘 − 1,

which contradicts to 𝐼 ′(𝐺) > 2𝑘 − 1. It implies that |𝐼1| ≥ 2 if 𝑡0 + 𝑙 = 1.

In light of (15), |𝐼1| ≥ 2, 𝑘 ≥ 2 and 𝐼 ′(𝐺) > 2𝑘 − 1, we have

0 ≤
𝑘∑︁

𝑖=1

(︀
𝑘2 − 𝑖 + 1

)︀⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
− 𝑘𝐼 ′(𝐺)|𝐼1| −

(𝑘 + 1)
⃒⃒
𝐼(1)

⃒⃒
2

+ 𝑘2 − 1

<

𝑘∑︁
𝑖=1

(︀
𝑘2 − 𝑖 + 1

)︀⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
−

(︀
2𝑘2 − 𝑘

)︀
|𝐼1| −

⃒⃒
𝐼(1)

⃒⃒
(𝑘 + 1)
2

+ 𝑘2 − 1

=
𝑘∑︁

𝑖=1

(︀
−𝑘2 + 𝑘 − 𝑖 + 1

)︀⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
−

⃒⃒
𝐼(1)

⃒⃒
(𝑘 + 1)
2

+ 𝑘2 − 1 < 0.

The last inequality can be derived by discussing
⃒⃒
𝐼(1)

⃒⃒
= 0 and

⃒⃒
𝐼(1)

⃒⃒
≥ 1 respectively. �

Claim 2. If 𝑡0 + 𝑙 ≥ 1, then |𝐼1| ≠ 0.

Proof. Suppose |𝐼1| = 0. We yield |𝐼2| ≠ 0 by |𝑉 (𝐻)| > 0, and hence 𝑘 ≥ 3.
If 𝑡0 + 𝑙 ≥ 2, then (13) becomes

𝑘−1∑︁
𝑗=1

(𝑘 − 2)(𝑘 − 𝑗)𝑖𝑗

≥
𝑘−1∑︁
𝑗=1

(𝑘𝐼 ′(𝐺)− 𝑘𝑗 − 𝑘 + 𝑗)𝑖𝑗 + 𝑘𝐼 ′(𝐺)− 2𝑘2 + 1

>

𝑘−1∑︁
𝑗=1

(𝑘𝐼 ′(𝐺)− 𝑘𝑗 − 𝑘 + 𝑗)𝑖𝑗 − 𝑘 + 1.

Since

(𝑘 − 2)(𝑘 − 𝑗)− 𝑘𝐼 ′(𝐺) + 𝑘𝑗 + 𝑘 − 𝑗

< (𝑘 − 2)(𝑘 − 𝑗)− 2𝑘2 + 𝑘𝑗 + 2𝑘 − 𝑗

= −𝑘2 + 𝑗 ≤ −𝑘2 + 𝑘 − 1,

we get −𝑘2 + 2𝑘 − 2 > 0, contradicting to 𝑘 ≥ 3.
Now, consider 𝑡0 + 𝑙 = 1 and (12) becomes

𝑘−1∑︁
𝑗=1

(𝑘 − 2)(𝑘 − 𝑗)𝑖𝑗 ≥
𝑘−1∑︁
𝑗=1

(𝑘𝐼 ′(𝐺)− 𝑘𝑗 − 𝑘 + 𝑗)𝑖𝑗 − 𝑘2 + 1. (16)

Set 𝑑min = min{𝑑𝐺−𝑆(𝑥)|𝑥 ∈ 𝑉 (𝐻2)}, then 𝑑min ∈ {1, . . . , 𝑘 − 2}. Let 𝑧 ∈ 𝑉 (𝐻2) such that 𝑑𝐺−𝑆(𝑧) = 𝑑min.
If |𝐼2| = 1, then we consider the following two circumstances.
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– 𝑡0 = 1 and 𝑙 = 0. Then |𝑉 (𝑇 )| = |𝑉 (𝐻2)|+ 1, 𝑘|𝑆| ≤ 𝑘|𝑇 | − 𝑑𝐺−𝑆(𝑇 )− 1 ≤ 𝑘 + |𝑉 (𝐻2)|(𝑘 − 𝑑min)− 1 and
|𝑆| ≤ 𝑘+|𝑉 (𝐻2)|(𝑘−𝑑min)−1

𝑘 ≤ 𝑘+|𝐼2|(𝑘−1)(𝑘−𝑑min)−1
𝑘 ≤ 𝑘+(𝑘−1)(𝑘−1)−1

𝑘 = 𝑘−1. Hence 𝑘 ≤ 𝛿(𝐺) ≤ 0+|𝑆| ≤ 𝑘−1,
a contradiction.

– 𝑡0 = 0 and 𝑙 = 1. Then |𝑉 (𝑇 )| = |𝑉 (𝐻2)|+ 𝑘, 𝑘|𝑆| ≤ 𝑘|𝑇 | − 𝑑𝐺−𝑆(𝑇 )− 1 ≤ 𝑘 + |𝑉 (𝐻2)|(𝑘 − 𝑑min)− 1 and

|𝑆| ≤ 𝑘 + |𝑉 (𝐻2)|(𝑘 − 𝑑min)− 1
𝑘

≤ 𝑘 + (𝑑min + 1)(𝑘 − 𝑑min)− 1
𝑘

= −1
𝑘

𝑑2
min +

(︂
1− 1

𝑘

)︂
𝑑min + 2− 1

𝑘
·

Hence, we acquire

𝐼 ′(𝐺) ≤ |𝑆 ∪ 𝑆′ ∪𝑁𝐺−𝑆(𝑧)|
𝑖(𝐺− 𝑆 ∪ 𝑆′ ∪𝑁𝐺−𝑆(𝑧))− 1

=
𝑑min − 𝑑2

min+𝑑min
𝑘 + 2− 1

𝑘 + (𝑘 − 1) + 𝑑min

2− 1

= −1
𝑘

𝑑2
min +

(︂
2− 1

𝑘

)︂
𝑑min + 𝑘 − 1

𝑘
+ 1.

Set

Ψ(𝑑min) = −1
𝑘

𝑑2
min +

(︂
2− 1

𝑘

)︂
𝑑min + 𝑘 − 1

𝑘
+ 1.

Thus, max{Ψ(𝑑min)} = Ψ
(︀
𝑘 − 1

2

)︀
and actually max{Ψ(𝑑min)} = Ψ(𝑘 − 2) due to the range of variable 𝑑min.

When 𝑑min = 𝑘 − 2, we infer

|𝑆| ≤ −1
𝑘

𝑑2
min +

(︂
1− 1

𝑘

)︂
𝑑min + 2− 1

𝑘
= −1

𝑘
(𝑘 − 2)2 +

(︂
1− 1

𝑘

)︂
(𝑘 − 2) + 2− 1

𝑘
= 3− 3

𝑘
·

Due to 𝑘 ≥ 3, we acquire |𝑆| ≤ 2, and then

𝐼 ′(𝐺) ≤ |𝑆 ∪ 𝑆′ ∪𝑁𝐺−𝑆(𝑧)|
𝑖(𝐺− 𝑆 ∪ 𝑆′ ∪𝑁𝐺−𝑆(𝑧))− 1

≤ 2 + (𝑘 − 1) + (𝑘 − 2)
2− 1

= 2𝑘 − 1,

which contradicts to 𝐼 ′(𝐺) > 2𝑘 − 1. It’s summarized that |𝐼2| ≥ 2 if 𝑡0 + 𝑙 = 1.
Hence, we get

𝑘−1∑︁
𝑗=1

(𝑘 − 2)(𝑘 − 𝑗)𝑖𝑗 −
𝑘−1∑︁
𝑗=1

(𝑘𝐼 ′(𝐺)− 𝑘𝑗 − 𝑘 + 𝑗)𝑖𝑗 < −2𝑘2 + 2𝑘 − 2,

which contradicts to (16). �

From Claims 1 and 2, we can see that |𝐼1| > 0 and |𝐼2| > 0. Applying |𝐼2| ≥ 1 yields

𝑘−1∑︁
𝑗=1

(𝑘 − 2)(𝑘 − 𝑗)𝑖𝑗 −
𝑘−1∑︁
𝑗=1

(𝑘𝐼 ′(𝐺)− 𝑘𝑗 − 𝑘 + 𝑗)𝑖𝑗 + 𝑘2 − 𝑘 + 1 < 0,

we infer
𝑘∑︁

𝑖=1

(︀
𝑘2 − 𝑘𝑖 + 𝑘 − 𝑖 + 1

)︀⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
> 𝑘𝐼 ′(𝐺)|𝐼1|+

(𝑘 + 1)
⃒⃒
𝐼(1)

⃒⃒
2

− 𝑘

𝑘∑︁
𝑖=1

(𝑖− 1)
⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
− 𝑘 + 2

or
𝑘∑︁

𝑖=1

(𝑘2 − 𝑘𝑖 + 𝑘 − 𝑖 + 1)
⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
− 𝑘𝐼 ′(𝐺)|𝐼1| −

(𝑘 + 1)
⃒⃒
𝐼(1)

⃒⃒
2

+ 𝑘

𝑘∑︁
𝑖=1

(𝑖− 1)
⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
+ 𝑘 − 2 > 0. (17)
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In light of (17), 𝑘 ≥ 2 and 𝐼 ′(𝐺) > 2𝑘 − 1, we obtain

0 <

𝑘∑︁
𝑖=1

(︀
𝑘2 − 𝑘𝑖 + 𝑘 − 𝑖 + 1

)︀⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
− (2𝑘2 − 𝑘)|𝐼1| −

(𝑘 + 1)
⃒⃒
𝐼(1)

⃒⃒
2

+ 𝑘

𝑘∑︁
𝑖=1

(𝑖− 1)
⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
+ 𝑘 − 2

=
𝑘∑︁

𝑖=1

(︀
−𝑘2 + 𝑘 − 𝑖 + 1

)︀⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
−

(𝑘 + 1)
⃒⃒
𝐼(1)

⃒⃒
2

+ 𝑘 − 2 < 0,

a contradiction.

Case 2. 𝑡0 + 𝑙 = 0. In this case, by (11) we deduce,

𝑘−1∑︁
𝑗=1

(𝑘 − 2)(𝑘 − 𝑗)𝑖𝑗 +
𝑘∑︁

𝑖=1

(︀
𝑘2 − 𝑘𝑖 + 𝑘 − 𝑖 + 1

)︀⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
(18)

≥
𝑘−1∑︁
𝑗=1

(𝑘𝐼 ′(𝐺)− 𝑘𝑗 − 𝑘 + 𝑗)𝑖𝑗 + 𝑘𝐼 ′(𝐺)|𝐼1|+
(𝑘 + 1)

⃒⃒
𝐼(1)

⃒⃒
2

− 𝑘

𝑘∑︁
𝑖=1

(𝑖− 1)
⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
− 𝑘𝐼 ′(𝐺) + 1.

Claim 3. If 𝑡0 + 𝑙 = 0, then |𝐼2| ≠ 0.

Proof. Suppose |𝐼2| = 0. Then we infer |𝐼1| ≠ 0, |𝑉 (𝑇 )| = |𝑉 (𝐻1)| and 𝑘|𝑆| ≤ 𝑘|𝑇 | − 𝑑𝐺−𝑆(𝑇 )− 1 = |𝑇 | − 1. If
|𝐼1| = 1, then |𝑇 | ≤ 𝑘 − 1 and |𝑆| ≤ |𝑇 |−1

𝑘 ≤ 1− 2
𝑘 · Thus, 𝑘 ≤ 𝛿(𝐺) ≤ |𝑆|+ (𝑘 − 1) ≤ 𝑘 − 2

𝑘 , a contradiction.
If |𝐼1| = 2, then |𝑇 | ≤ 2𝑘 and |𝑆| ≤ |𝑇 |−1

𝑘 ≤ 2 − 1
𝑘 · Thus, from 𝑘 ≤ 𝛿(𝐺) ≤ |𝑆| + (𝑘 − 1) ≤ 𝑘 + 1 − 1

𝑘 , we
verify 𝛿(𝐺) = 𝑘 and |𝑆| = 1. In this case, 𝑖(𝐺− 𝑈) = 2 where 𝑈 = 𝑆 ∪ 𝐶1 ∪ (𝑁𝐺(𝐼1) ∩𝑊 ), and

|𝑈 | ≤ |𝑆|+ |𝐶1|+
𝑘∑︁

𝑖=1

(𝑖− 1)
⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
≤ 1 +

𝑘∑︁
𝑖=1

(𝑘 − 𝑖)
⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
−

⃒⃒
𝐼(1)

⃒⃒
2

+
𝑘∑︁

𝑖=1

(𝑖− 1)
⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
= 1 + (𝑘 − 1)|𝐼1| −

⃒⃒
𝐼(1)

⃒⃒
2

= 2𝑘 − 1−
⃒⃒
𝐼(1)

⃒⃒
2

≤ 2𝑘 − 1.

Hence,

𝐼 ′(𝐺) ≤ |𝑈 |
𝑖(𝐺− 𝑈)− 1

≤ 2𝑘 − 1,

which contradicts to 𝐼 ′(𝐺) > 2𝑘 − 1. Thus, we have |𝐼1| ≥ 3.
Using (18), we derive

𝑘∑︁
𝑖=1

(︀
𝑘2 − 𝑘𝑖 + 𝑘 − 𝑖 + 1

)︀⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
− 𝑘𝐼 ′(𝐺)|𝐼1| −

(𝑘 + 1)
⃒⃒
𝐼(1)

⃒⃒
2

+ 𝑘

𝑘∑︁
𝑖=1

(𝑖− 1)
⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
+ 𝑘𝐼 ′(𝐺)− 1 ≥ 0. (19)

In light of (19), 𝐼 ′(𝐺) > 2𝑘 − 1, 𝑘 ≥ 2 and |𝐼1| ≥ 3, we get

0 ≤
𝑘∑︁

𝑖=1

(︀
𝑘2 − 𝑖 + 1

)︀⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
− 𝑘𝐼 ′(𝐺)|𝐼1| −

(𝑘 + 1)
⃒⃒
𝐼(1)

⃒⃒
2

+ 𝑘𝐼 ′(𝐺)− 1

<

𝑘∑︁
𝑖=1

(︀
𝑘2 − 𝑖 + 1

)︀⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
−

(︀
2𝑘2 − 𝑘

)︀
(|𝐼1| − 1)−

(𝑘 + 1)
⃒⃒
𝐼(1)

⃒⃒
2

− 1

=
𝑘∑︁

𝑖=1

(︀
−𝑘2 + 𝑘 − 𝑖 + 1

)︀⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
−

(𝑘 + 1)
⃒⃒
𝐼(1)

⃒⃒
2

+ 2𝑘2 − 𝑘 − 1 < 0,

a contradiction. �
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Claim 4. If 𝑡0 + 𝑙 = 0, then |𝐼1| ≠ 0.

Proof. Suppose |𝐼1| = 0. Then |𝐼2| ≠ 0 using |𝑉 (𝐻)| > 0, and thus 𝑘 ≥ 3. In terms of (18), we infer

𝑘−1∑︁
𝑗=1

(𝑘 − 2)(𝑘 − 𝑗)𝑖𝑗

≥
𝑘−1∑︁
𝑗=1

(𝑘𝐼 ′(𝐺)− 𝑘𝑗 − 𝑘 + 𝑗)𝑖𝑗 − 𝑘𝐼 ′(𝐺) + 1

=
𝑘−1∑︁
𝑗=1

(−𝑘𝑗 − 𝑘 + 𝑗)𝑖𝑗 + 𝑘𝐼 ′(𝐺)(|𝐼2| − 1) + 1

>

𝑘−1∑︁
𝑗=1

(−𝑘𝑗 − 𝑘 + 𝑗)𝑖𝑗 +
(︀
2𝑘2 − 𝑘

)︀
(|𝐼2| − 1) + 1

=
𝑘−1∑︁
𝑗=1

(︀
2𝑘2 − 𝑘𝑗 − 2𝑘 + 𝑗

)︀
𝑖𝑗 − 2𝑘2 + 𝑘 + 1.

Note that (𝑘 − 2)(𝑘 − 𝑗)− 2𝑘2 + 𝑘𝑗 + 2𝑘 − 𝑗 = −𝑘2 + 𝑗 ≤ −𝑘2 + 𝑘 − 1.
Set 𝑑min and 𝑧 ∈ 𝑉 (𝐻2) as in Claim 2, thus 𝑑min ∈ {1, . . . , 𝑘 − 2} and 𝑑𝐺−𝑆(𝑧) = 𝑑min. If |𝐼2| = 1, then

𝑘|𝑆| ≤ 𝑘|𝑇 | − 𝑑𝐺−𝑆(𝑇 )− 1 ≤ |𝑇 |(𝑘 − 𝑑min)− 1 and |𝑆| ≤ |𝑇 |(𝑘−𝑑min)−1
𝑘 ≤ |𝐼2|(𝑘−1)(𝑘−𝑑min)−1

𝑘 = (𝑘−1)(𝑘−𝑑min)−1
𝑘 ·

Hence 𝑘 ≤ 𝛿(𝐺) ≤ 𝑑min + |𝑆| ≤ 𝑑min + (𝑘−1)(𝑘−𝑑min)−1
𝑘 = 𝑘 − 1 + 𝑑min

𝑘 − 1
𝑘 ≤ 𝑘 − 1 + 𝑘−2

𝑘 − 1
𝑘 = 𝑘 − 3

𝑘 , a
contradiction.

Hence, we get |𝐼2| ≥ 2 and

(︀
−𝑘2 + 𝑘 − 1

)︀
|𝐼2| =

𝑘−1∑︁
𝑗=1

(︀
−𝑘2 + 𝑘 − 1

)︀
𝑖𝑗 ≥

𝑘−1∑︁
𝑗=1

(︀
−𝑘2 + 𝑗

)︀
𝑖𝑗

=
𝑘−1∑︁
𝑗=1

(𝑘 − 2)(𝑘 − 𝑗)𝑖𝑗 −
𝑘−1∑︁
𝑗=1

(2𝑘2 − 𝑘𝑗 − 2𝑘 + 𝑗)𝑖𝑗

> −2𝑘2 + 𝑘 + 1.

If |𝐼2| ≥ 3, then −3𝑘2 + 3𝑘 − 3 > −2𝑘2 + 𝑘 + 1, i.e., −𝑘2 + 2𝑘 − 4 > 0, a contradiction. Hence, |𝐼2| = 2 and
we set 𝑑1 and 𝑑2 as the degrees in 𝐺− 𝑆 of these two vertices in 𝐼2 (assume that 𝑑1 ≤ 𝑑2 and thus 𝑑1 ≤ 𝑘− 2).
We get (−𝑘2 + 𝑑1) + (−𝑘2 + 𝑑2) =

∑︀𝑘−1
𝑗=1 (−𝑘2 + 𝑗)𝑖𝑗 > −2𝑘2 + 𝑘 + 1. Hence, we infer 𝑑1 + 𝑑2 ≥ 𝑘 + 2.

We check that |𝑆| ≤ (𝑑1+1)(𝑘−𝑑1)+(𝑑2+1)(𝑘−𝑑2)−1
𝑘 , 𝑖(𝐺− 𝑈) = 2 where 𝑈 = 𝑆 ∪ 𝐶2 ∪ (𝑁𝐺(𝐼2) ∩𝑊 ), and

|𝑈 | ≤ |𝑆|+ |𝐶2|+ |𝑁𝐺(𝐼2) ∩𝑊 |

≤ (𝑑1 + 1)(𝑘 − 𝑑1) + (𝑑2 + 1)(𝑘 − 𝑑2)− 1
𝑘

+
𝑘−1∑︁
𝑗=1

𝑗𝑖𝑗

=
(𝑑1 + 1)(𝑘 − 𝑑1) + (𝑑2 + 1)(𝑘 − 𝑑2)− 1

𝑘
+ 𝑑1 + 𝑑2

=
(︂
−1

𝑘
𝑑2
1 + 𝑑1

(︂
2− 1

𝑘

)︂)︂
+

(︂
−1

𝑘
𝑑2
2 + 𝑑2

(︂
2− 1

𝑘

)︂)︂
+ 2− 1

𝑘
·

Set

Υ(𝑑1, 𝑑2) =
(︂
−1

𝑘
𝑑2
1 + 𝑑1

(︂
2− 1

𝑘

)︂)︂
+

(︂
−1

𝑘
𝑑2
2 + 𝑑2

(︂
2− 1

𝑘

)︂)︂
+ 2− 1

𝑘
·
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Clearly, max Υ(𝑑1, 𝑑2) = Υ(𝑘 − 2, 𝑘 − 1). When (𝑑1, 𝑑2) = (𝑘 − 2, 𝑘 − 1), we get |𝑆| ≤ 2(𝑘−1)+𝑘−1
𝑘 = 3 − 3

𝑘 .
Thus, |𝑆| ≤ 2 due to 𝑘 ≥ 3.

Therefore, |𝑈 | ≤ |𝑆|+ |𝐶2|+ |𝑁𝐺(𝐼2) ∩𝑊 | ≤ 2 + (𝑘 − 2) + (𝑘 − 1) = 2𝑘 − 1 and

2𝑘 − 1 < 𝐼 ′(𝐺) ≤ |𝑈 |
𝑖(𝐺− 𝑈)− 1

≤ 2𝑘 − 1,

which leads to a contradiction. �

From Claims 3 and 4, we can see that |𝐼1| ≥ 1 and |𝐼2| ≥ 1.

Claim 5. |𝐼1|+ |𝐼2| ≥ 3.

Proof. Otherwise, we have |𝐼1| + |𝐼2| = 2, i.e., |𝐼1| = |𝐼2| = 1. We get |𝑇 | ≤ (𝑘 − 1) + (𝑘 − 1) = 2𝑘 − 2 and
𝑘|𝑆| ≤ 𝑘|𝑇 |−𝑑𝐺−𝑆(𝑇 )−1 ≤ (𝑘−1)+(𝑑3+1)(𝑘−𝑑3)−1, where 𝐼2 = {𝑧′} and 𝑑3 = 𝑑𝐺−𝑆(𝑧′) (𝑑3 ∈ {1, . . . , 𝑘−2}).
Moreover, |𝑆| ≤ 𝑘+(𝑑3+1)(𝑘−𝑑3)−2

𝑘 and

𝑘 ≤ 𝛿(𝐺) ≤ |𝑆|+ 𝑑3 ≤
𝑘 + (𝑑3 + 1)(𝑘 − 𝑑3)− 2

𝑘
+ 𝑑3

= −1
𝑘

𝑑2
3 +

(︂
2− 1

𝑘

)︂
𝑑3 + 2− 2

𝑘

≤ −1
𝑘

(𝑘 − 2)2 +
(︂

2− 1
𝑘

)︂
(𝑘 − 2) + 2− 2

𝑘
= 𝑘 + 1− 4

𝑘
,

we have 𝑘 ≥ 4.
We acquire 𝑖(𝐺− 𝑈) = 2 where 𝑈 = 𝑆 ∪ 𝐶1 ∪ (𝑁𝐺(𝐼1) ∩𝑊 ) ∪ 𝐶2 ∪ (𝑁𝐺(𝐼2) ∩𝑊 ), and

|𝑈 | ≤ |𝑆|+ |𝐶1|+
𝑘∑︁

𝑖=1

(𝑖− 1)
⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
+

𝑘−1∑︁
𝑗=1

𝑗𝑖𝑗

≤ 𝑘 + (𝑑3 + 1)(𝑘 − 𝑑3)− 2
𝑘

+ (𝑘 − 1) + 𝑑3 = −1
𝑘

𝑑2
3 +

(︂
2− 1

𝑘

)︂
𝑑3 + 𝑘 + 1− 2

𝑘
·

Set

Ξ(𝑑3) = −1
𝑘

𝑑2
3 +

(︂
2− 1

𝑘

)︂
𝑑3 + 𝑘 + 1− 2

𝑘
·

Then max{Ξ(𝑑3)} = Ξ
(︀
𝑘 − 1

2

)︀
and actually max{Ξ(𝑑3)} = Ξ(𝑘 − 2) due to the range 𝑑3. When 𝑑3 = 𝑘 − 2,

we have

|𝑆| ≤ 𝑘 + (𝑑3 + 1)(𝑘 − 𝑑3)− 2
𝑘

=
𝑘 + 2(𝑘 − 1)− 2

𝑘
= 3− 4

𝑘
,

and thus |𝑆| ≤ 2 due to 𝑘 ≥ 4.
Therefore,

|𝑈 | ≤ |𝑆|+ |𝐶1|+
𝑘∑︁

𝑖=1

(𝑖− 1)
⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
+

𝑘−1∑︁
𝑗=1

𝑗𝑖𝑗 ≤ 2 + (𝑘 − 1) + (𝑘 − 2) = 2𝑘 − 1

and
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𝐼 ′(𝐺) ≤ |𝑈 |
𝑖(𝐺− 𝑈)− 1

≤ 2𝑘 − 1,

which contradicts to 𝐼 ′(𝐺) > 2𝑘 − 1. �

The final discussion is divided into two subcases.
Case 2.1. |𝐼2| ≥ 2.
In terms of |𝐼2| ≥ 2, we deduce

𝑘−1∑︁
𝑗=1

(𝑘𝐼 ′(𝐺)− 𝑘𝑗 − 𝑘 + 𝑗)𝑖𝑗 >

𝑘−1∑︁
𝑗=1

(𝑘 − 2)(𝑘 − 𝑗)𝑖𝑗 + 2𝑘2 − 2𝑘 + 2. (20)

Combining (18) and (20), one has

𝑘∑︁
𝑖=1

(︀
𝑘2 − 𝑘𝑖 + 𝑘 − 𝑖 + 1

)︀⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
(21)

> 𝑘𝐼 ′(𝐺)|𝐼1|+
(𝑘 + 1)

⃒⃒
𝐼(1)

⃒⃒
2

− 𝑘

𝑘∑︁
𝑖=1

(𝑖− 1)
⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
− 𝑘𝐼 ′(𝐺) + 2𝑘2 − 2𝑘 + 3.

In light of (21), |𝐼1| ≥ 1 and 𝐼 ′(𝐺) > 2𝑘 − 1, we have

0 <

𝑘∑︁
𝑖=1

(︀
𝑘2 − 𝑖 + 1

)︀⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
− (𝑘 + 1)

⃒⃒
𝐼(1)

⃒⃒
2

− 𝑘𝐼 ′(𝐺)(|𝐼1| − 1)− 2𝑘2 + 2𝑘 − 3

<

𝑘∑︁
𝑖=1

(︀
𝑘2 − 𝑖 + 1

)︀⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
− (𝑘 + 1)

⃒⃒
𝐼(1)

⃒⃒
2

−
(︀
2𝑘2 − 𝑘

)︀
(|𝐼1| − 1)− 2𝑘2 + 2𝑘 − 3

=
𝑘∑︁

𝑖=1

(︀
−𝑘2 + 𝑘 − 𝑖 + 1

)︀⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
− (𝑘 + 1)

⃒⃒
𝐼(1)

⃒⃒
2

+ 𝑘 − 3 < 0,

a contradiction.
Case 2.2. |𝐼1| ≥ 2.
In terms of |𝐼2| ≥ 1, we deduce

𝑘−1∑︁
𝑗=1

(𝑘𝐼 ′(𝐺)− 𝑘𝑗 − 𝑘 + 𝑗)𝑖𝑗 >

𝑘−1∑︁
𝑗=1

(𝑘 − 2)(𝑘 − 𝑗)𝑖𝑗 + 𝑘2 − 𝑘 + 1.

Combining the above inequality into (18), one gets

𝑘∑︁
𝑖=1

(︀
𝑘2 − 𝑘𝑖 + 𝑘 − 𝑖 + 1

)︀⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
(22)

> 𝑘𝐼 ′(𝐺)|𝐼1|+
(𝑘 + 1)

⃒⃒
𝐼(1)

⃒⃒
2

− 𝑘

𝑘∑︁
𝑖=1

(𝑖− 1)
⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
− 𝑘𝐼 ′(𝐺) + 𝑘2 − 𝑘 + 2.

In light of (22), |𝐼1| ≥ 2 and 𝐼 ′(𝐺) > 2𝑘 − 1, we derive
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0 <

𝑘∑︁
𝑖=1

(︀
𝑘2 − 𝑖 + 1

)︀⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
− (𝑘 + 1)

⃒⃒
𝐼(1)

⃒⃒
2

− 𝑘𝐼 ′(𝐺)(|𝐼1| − 1)− 𝑘2 + 𝑘 − 2

<

𝑘∑︁
𝑖=1

(︀
𝑘2 − 𝑖 + 1

)︀⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
− (𝑘 + 1)

⃒⃒
𝐼(1)

⃒⃒
2

−
(︀
2𝑘2 − 𝑘

)︀
(|𝐼1| − 1)− 𝑘2 + 𝑘 − 2

=
𝑘∑︁

𝑖=1

(︀
−𝑘2 + 𝑘 − 𝑖 + 1

)︀⃒⃒⃒
𝐼(𝑖)

⃒⃒⃒
− (𝑘 + 1)

⃒⃒
𝐼(1)

⃒⃒
2

+ 𝑘2 − 2 < 0,

a contradiction
Therefore, we complete the proof of the desired result. �

3. Conclusion and discussion

In this contribution, we obtain the tight 𝐼 ′(𝐺) bound for a graph to admit fractional 𝑘-factor. Since isolation
toughness plays a key role in network security and the fractional factor is a characterization of fractional flow
in data transmission networks, we believe that the theoretical conclusion determined in our paper has certain
guiding significance for the practical application of network engineering. Furthermore, Theorem 1 has potential
to be generalized in other fractional factor settings, as well as fractional deleted graph and fractional critical
graph frameworks. Therefore, we propose the following open problems (the explanation of these concepts can
be found in the relevant literatures).

Problem 1. What is the tight 𝐼 ′(𝐺) bound for fractional (𝑔, 𝑓, 𝑛)-critical graphs?

Problem 2. What is the tight 𝐼 ′(𝐺) bound for fractional (𝑔, 𝑓,𝑚)-deleted graphs?

Acknowledgements. We thank the reviewers for their constructive comments in improving the quality of this paper. This
work has been partially supported by National Science Foundation of China (No. 12161094).
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