Discontinuous Galerkin and C 0 -IP finite element approximation of periodic Hamilton–Jacobi–Bellman–Isaacs problems with application to numerical homogenization
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 2, pp. 679-704

In the first part of the paper, we study the discontinuous Galerkin (DG) and C0 interior penalty (C0-IP) finite element approximation of the periodic strong solution to the fully nonlinear second-order Hamilton–Jacobi–Bellman–Isaacs (HJBI) equation with coefficients satisfying the Cordes condition. We prove well-posedness and perform abstract a posteriori and a priori analyses which apply to a wide family of numerical schemes. These periodic problems arise as the corrector problems in the homogenization of HJBI equations. The second part of the paper focuses on the numerical approximation to the effective Hamiltonian of ergodic HJBI operators via DG/C0-IP finite element approximations to approximate corrector problems. Finally, we provide numerical experiments demonstrating the performance of the numerical schemes.

DOI : 10.1051/m2an/2022017
Classification : 35B27, 35J60, 65N12, 65N15, 65N30
Keywords: Hamilton–Jacobi–Bellman and HJB–Isaacs equations, nondivergence-form elliptic PDE, Cordes condition, nonconforming finite element methods, homogenization
@article{M2AN_2022__56_2_679_0,
     author = {Kawecki, Ellya L. and Sprekeler, Timo},
     title = {Discontinuous {Galerkin} and $C^0${-IP} finite element approximation of periodic {Hamilton{\textendash}Jacobi{\textendash}Bellman{\textendash}Isaacs} problems with application to numerical homogenization},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {679--704},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {2},
     doi = {10.1051/m2an/2022017},
     mrnumber = {4393617},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022017/}
}
TY  - JOUR
AU  - Kawecki, Ellya L.
AU  - Sprekeler, Timo
TI  - Discontinuous Galerkin and $C^0$-IP finite element approximation of periodic Hamilton–Jacobi–Bellman–Isaacs problems with application to numerical homogenization
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 679
EP  - 704
VL  - 56
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022017/
DO  - 10.1051/m2an/2022017
LA  - en
ID  - M2AN_2022__56_2_679_0
ER  - 
%0 Journal Article
%A Kawecki, Ellya L.
%A Sprekeler, Timo
%T Discontinuous Galerkin and $C^0$-IP finite element approximation of periodic Hamilton–Jacobi–Bellman–Isaacs problems with application to numerical homogenization
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 679-704
%V 56
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022017/
%R 10.1051/m2an/2022017
%G en
%F M2AN_2022__56_2_679_0
Kawecki, Ellya L.; Sprekeler, Timo. Discontinuous Galerkin and $C^0$-IP finite element approximation of periodic Hamilton–Jacobi–Bellman–Isaacs problems with application to numerical homogenization. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 2, pp. 679-704. doi: 10.1051/m2an/2022017

[1] Y. Achdou, F. Camilli and I. Capuzzo Dolcetta, Homogenization of Hamilton-Jacobi equations: numerical methods. Math. Models Methods Appl. Sci. 18 (2008) 1115–1143. | MR | Zbl

[2] O. Alvarez and M. Bardi, Viscosity solutions methods for singular perturbations in deterministic and stochastic control. SIAM J. Control Optim. 40 (2001) 1159–1188. | MR | Zbl | DOI

[3] O. Alvarez and M. Bardi, Singular perturbations of nonlinear degenerate parabolic PDEs: a general convergence result. Arch. Ration. Mech. Anal. 170 (2003) 17–61. | MR | Zbl

[4] O. Alvarez and M. Bardi, Ergodic problems in differential games. In: Advances in Dynamic Game Theory. Vol. 9 of Ann. Internat. Soc. Dynam. Games. Birkhäuser Boston, Boston, MA (2007) 131–152. | MR | Zbl

[5] O. Alvarez and M. Bardi, Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations. Mem. Amer. Math. Soc. 204 (2010) vi+77. | MR | Zbl

[6] O. Alvarez, M. Bardi and C. Marchi, Multiscale problems and homogenization for second-order Hamilton-Jacobi equations. J. Differ. Equ. 243 (2007) 349–387. | MR | Zbl

[7] M. Arisawa and P.-L. Lions, On ergodic stochastic control. Comm. Part. Differ. Equ. 23 (1998) 2187–2217. | MR | Zbl | DOI

[8] O. Bokanowski, S. Maroso and H. Zidani, Some convergence results for Howard’s algorithm. SIAM J. Numer. Anal. 47 (2009) 3001–3026. | MR | Zbl

[9] S. C. Brenner and E. L. Kawecki, Adaptive C 0 interior penalty methods for Hamilton–Jacobi–Bellman equations with Cordes coefficients. J. Comput. Appl. Math. 388 (2021) 113241. | MR

[10] L. Caffarelli, M. G. Crandall, M. Kocan and A. Świȩch, On viscosity solutions of fully nonlinear equations with measurable ingredients. Comm. Pure Appl. Math. 49 (1996) 365–397. | MR | Zbl

[11] F. Camilli and M. Falcone, An approximation scheme for the optimal control of diffusion processes. ESAIM: M2AN 29 (1995) 97–122. | MR | Zbl | Numdam | DOI

[12] F. Camilli and E. R. Jakobsen, A finite element like scheme for integro-partial differential Hamilton–Jacobi–Bellman equations. SIAM J. Numer. Anal. 47 (2009) 2407–2431. | MR | Zbl | DOI

[13] F. Camilli and C. Marchi, Rates of convergence in periodic homogenization of fully nonlinear uniformly elliptic PDEs. Nonlinearity 22 (2009) 1481–1498. | MR | Zbl | DOI

[14] Y. Capdeboscq, T. Sprekeler and E. Süli, Finite element approximation of elliptic homogenization problems in nondivergence-form. ESAIM: M2AN 54 (2020) 1221–1257. | MR | Zbl | Numdam

[15] M. G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1992) 1–67. | MR | Zbl

[16] L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE. Proc. R. Soc. Edinburgh Sect. A 111 (1989) 359–375. | MR | Zbl

[17] L. C. Evans, Periodic homogenisation of certain fully nonlinear partial differential equations. Proc. R. Soc. Edinburgh Sect. A 120 (1992) 245–265. | MR | Zbl

[18] M. Falcone and M. Rorro, On a variational approximation of the effective Hamiltonian. In: Numerical Mathematics and Advanced Applications. Springer, Berlin (2008) 719–726. | MR | Zbl | DOI

[19] X. Feng and M. Jensen, Convergent semi-Lagrangian methods for the Monge-Ampère equation on unstructured grids. SIAM J. Numer. Anal. 55 (2017) 691–712. | MR | DOI

[20] X. Feng, R. Glowinski and M. Neilan, Recent developments in numerical methods for fully nonlinear second order partial differential equations. SIAM Rev. 55 (2013) 205–267. | MR | Zbl

[21] C. Finlay and A. M. Oberman, Approximate homogenization of convex nonlinear elliptic PDEs. Commun. Math. Sci. 16 (2018) 1895–1906. | MR

[22] C. Finlay and A. M. Oberman, Approximate homogenization of fully nonlinear elliptic PDEs: estimates and numerical results for Pucci type equations. J. Sci. Comput. 77 (2018) 936–949. | MR

[23] W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, 2nd edition. Vol. 25 of Stochastic Modelling and Applied Probability. Springer, New York (2006). | MR | Zbl

[24] D. Gallistl, Numerical approximation of planar oblique derivative problems in nondivergence form. Math. Comp. 88 (2019) 1091–1119. | MR

[25] D. Gallistl and E. Süli, Mixed finite element approximation of the Hamilton–Jacobi–Bellman equation with Cordes coefficients. SIAM J. Numer. Anal. 57 (2019) 592–614. | MR

[26] D. Gallistl, T. Sprekeler and E. Süli, Mixed finite element approximation of periodic Hamilton–Jacobi–Bellman problems with application to numerical homogenization. Multiscale Model. Simul. 19 (2021) 1041–1065. | MR

[27] R. Glowinski, S. Leung and J. Qian, A simple explicit operator-splitting method for effective Hamiltonians. SIAM J. Sci. Comput. 40 (2018) A484–A503. | MR

[28] D. A. Gomes and A. M. Oberman, Computing the effective Hamiltonian using a variational approach. SIAM J. Control Optim. 43 (2004) 792–812. | MR | Zbl | DOI

[29] H. Ishii, On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDEs. Comm. Pure Appl. Math. 42 (1989) 15–45. | MR | Zbl | DOI

[30] M. Jensen, L 2 (H γ 1 ) finite element convergence for degenerate isotropic Hamilton–Jacobi–Bellman equations. IMA J. Numer. Anal. 37 (2017) 1300–1316. | MR

[31] M. Jensen and I. Smears, On the convergence of finite element methods for Hamilton–Jacobi–Bellman equations. SIAM J. Numer. Anal. 51 (2013) 137–162. | MR | Zbl

[32] O. A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 2374–2399. | MR | Zbl

[33] E. L. Kawecki, A DGFEM for nondivergence form elliptic equations with Cordes coefficients on curved domains. Numer. Methods Part. Differ. Equ. 35 (2019) 1717–1744. | MR

[34] E. L. Kawecki, A discontinuous Galerkin finite element method for uniformly elliptic two dimensional oblique boundary-value problems. SIAM J. Numer. Anal. 57 (2019) 751–778. | MR

[35] E. L. Kawecki and T. Pryer, Virtual element methods for non-divergence form equations. To appear.

[36] E. L. Kawecki and I. Smears, Unified analysis of discontinuous Galerkin and C 0 -interior penalty finite element methods for Hamilton–Jacobi–Bellman and Isaacs equations. ESAIM: M2AN 55 (2021) 449–478. | MR | Numdam

[37] E. L. Kawecki and I. Smears, Convergence of adaptive discontinuous Galerkin and C 0 -interior penalty finite element methods for Hamilton–Jacobi–Bellman and Isaacs equations, Found. Comput. Math. (2021) DOI: . | DOI | MR

[38] E. L. Kawecki, O. Lakkis and T. Pryer, A finite element method for the Monge-Ampère equation with transport boundary conditions. Preprint (2018). | arXiv

[39] P.-L. Lions, Optimal control of diffusion processes and Hamilton–Jacobi–Bellman equations. II. Viscosity solutions and uniqueness. Comm. Part. Differ. Equ. 8 (1983) 1229–1276. | MR | Zbl

[40] P.-L. Lions, A remark on Bony maximum principle. Proc. Amer. Math. Soc. 88 (1983) 503–508. | MR | Zbl

[41] S. Luo, Y. Yu and H. Zhao, A new approximation for effective Hamiltonians for homogenization of a class of Hamilton-Jacobi equations. Multiscale Model. Simul. 9 (2011) 711–734. | MR | Zbl

[42] N. Nadirashvili and S. Vlăduț, Nonclassical solutions of fully nonlinear elliptic equations. Geom. Funct. Anal. 17 (2007) 1283–1296. | MR | Zbl

[43] N. Nadirashvili and S. Vlăduț, Singular solutions of Hessian fully nonlinear elliptic equations. Adv. Math. 228 (2011) 1718–1741. | MR | Zbl

[44] M. Neilan and M. Wu, Discrete Miranda-Talenti estimates and applications to linear and nonlinear PDEs. J. Comput. Appl. Math. 356 (2019) 358–376. | MR

[45] M. Neilan, A. J. Salgado and W. Zhang, Numerical analysis of strongly nonlinear PDEs. Acta Numer. 26 (2017) 137–303. | MR

[46] A. M. Oberman, R. Takei and A. Vladimirsky, Homogenization of metric Hamilton-Jacobi equations. Multiscale Model. Simul. 8 (2009) 269–295. | MR | Zbl

[47] J. Qian, Two approximations for effective Hamiltonians arising from homogenization of Hamilton-Jacobi equations. UCLA CAM report 03–39 (2003).

[48] J. Qian, H. V. Tran and Y. Yu, Min-max formulas and other properties of certain classes of nonconvex effective Hamiltonians. Math. Ann. 372 (2018) 91–123. | MR

[49] A. J. Salgado and W. Zhang, Finite element approximation of the Isaacs equation. ESAIM: M2AN 53 (2019) 351–374. | MR | Zbl | Numdam

[50] J. Schöberl, C++ 11 implementation of finite elements in ngsolve. Tech. Rep. ASC Report 30/2014, Institute for Analysis and Scientific Computing, Vienna University of Technology (2014).

[51] I. Smears and E. Süli, Discontinuous Galerkin finite element approximation of nondivergence form elliptic equations with Cordès coefficients. SIAM J. Numer. Anal. 51 (2013) 2088–2106. | MR | Zbl

[52] I. Smears and E. Süli, Discontinuous Galerkin finite element approximation of Hamilton–Jacobi–Bellman equations with Cordes coefficients. SIAM J. Numer. Anal. 52 (2014) 993–1016. | MR | Zbl

[53] I. Smears and E. Süli, Discontinuous Galerkin finite element methods for time-dependent Hamilton–Jacobi–Bellman equations with Cordes coefficients. Numer. Math. 133 (2016) 141–176. | MR | Zbl

[54] T. Sprekeler and H. V. Tran, Optimal convergence rates for elliptic homogenization problems in nondivergence-form: analysis and numerical illustrations. Multiscale Model. Simul. 19 (2021) 1453–1473. | MR | Zbl

[55] K. Vemaganti, Discontinuous Galerkin methods for periodic boundary value problems. Numer. Methods Part. Differ. Equ. 23 (2007) 587–596. | MR | Zbl

Cité par Sources :