The modified Maxwell’s Steklov eigenvalue problem is a new problem arising from the study of inverse electromagnetic scattering problems. In this paper, we investigate two finite element methods for this problem and perform the convergence analysis. Moreover, the monotonic convergence of the discrete eigenvalues computed by one of the methods is analyzed.
Keywords: Steklov eigenvalues, Maxwell’s equation, finite element method
@article{M2AN_2022__56_1_287_0,
author = {Gong, Bo},
title = {Convergence analysis of two finite element methods for the modified {Maxwell{\textquoteright}s} {Steklov} eigenvalue problem},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {287--301},
year = {2022},
publisher = {EDP-Sciences},
volume = {56},
number = {1},
doi = {10.1051/m2an/2022001},
mrnumber = {4378548},
zbl = {1490.65251},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2022001/}
}
TY - JOUR AU - Gong, Bo TI - Convergence analysis of two finite element methods for the modified Maxwell’s Steklov eigenvalue problem JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2022 SP - 287 EP - 301 VL - 56 IS - 1 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2022001/ DO - 10.1051/m2an/2022001 LA - en ID - M2AN_2022__56_1_287_0 ER -
%0 Journal Article %A Gong, Bo %T Convergence analysis of two finite element methods for the modified Maxwell’s Steklov eigenvalue problem %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2022 %P 287-301 %V 56 %N 1 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2022001/ %R 10.1051/m2an/2022001 %G en %F M2AN_2022__56_1_287_0
Gong, Bo. Convergence analysis of two finite element methods for the modified Maxwell’s Steklov eigenvalue problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 1, pp. 287-301. doi: 10.1051/m2an/2022001
[1] and , Isoparametric finite-element approximation of a Steklov eigenvalue problem. IMA J. Numer. Anal. 24 (2004) 309–322. | MR | Zbl
[2] , and , Multigrid in and . Numer. Math. 85 (2000) 197–217. | MR | Zbl
[3] and , Eigenvalue problems. In: Handbook of Numerical Analysis, edited by and . Vol. II. Elseveier Science Publishers B.V., North-Holland (1991). | MR | Zbl
[4] and , Kernel Functions and Elliptic Differential Equations in Mathematical Physics. Academic Press (1953). | MR | Zbl
[5] , Finite element approximation of eigenvalue problems. Acta Numer. 19 (2010) 1–120. | MR | Zbl
[6] and , Approximation of Steklov eigenvalues of non-selfadjoint second order elliptic operators. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. Elsevier (1972) 387–408. | MR | Zbl
[7] and , On traces for functional spaces related to Maxwell’s equations Part I: an integration by parts formula in Lipschitz polyhedra. Math. Methods Appl. Sci. 24 (2001) 9–30. | MR | Zbl
[8] , and , Boundary element methods for Maxwell’s equations on non-smooth domains. Numer. Math. 92 (2002) 679–710. | MR | Zbl
[9] , and , On traces for in Lipschitz domains. J. Math. Anal. App. 276 (2002) 845–867. | MR | Zbl
[10] , , and , Stekloff eigenvalues in inverse scattering. SIAM J. Appl. Math. 76 (2016) 1737–1763. | MR | Zbl
[11] , and , Electromagnetic Stekloff eigenvalues in inverse scattering. SIAM J. Math. Anal. 49 (2017) 4376–4401. | MR | Zbl
[12] , and , Using eigenvalues to detect anomalies in the exterior of a cavity. Inverse Prob. 34 (2018) 085006. | MR | Zbl
[13] , and , Fluids and Periodic Structures. Wiley (1995). | MR | Zbl
[14] , A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains. Math. Methods Appl. Sci. 12 (1990) 365–368. | MR | Zbl
[15] , and , Finite element approximation of the modified Maxwell’s Stekloff eigenvalues. SIAM J. Numer. Anal. 59 (2021) 2430–2448. | MR | Zbl
[16] , Electromagnetic steklov eigenvalues: approximation analysis. ESAIM: M2AN 55 (2021) 57–76. | MR | Zbl | Numdam
[17] , and , Transmission eigenvalues and non-destructive testing of anisotropic magnetic materials with voids. Inverse Prob. 30 (2014) 035016. | MR | Zbl
[18] and , Natural boundary element methods for the electric field integral equation on polyhedra. SIAM J. Numer. Anal. 40 (2002) 66–86. | MR | Zbl
[19] , and , Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations. App. Math. 58 (2013) 129–151. | MR | Zbl
[20] , and , Spectral indicator method for a non-selfadjoint Steklov eigenvalue problem. J. Sci. Comput. 79 (2019) 1814–1831. | MR | Zbl | DOI
[21] , Finite Element Methods for Maxwell’s Equations. Oxford University Press (2003). | MR | Zbl | DOI
[22] , and , A virtual element method for the Steklov eigenvalue problem. Math. Models Methods Appl. Sci. 25 (2015) 1421–1445. | MR | Zbl | DOI
[23] and , Finite Element Methods for Eigenvalue Problems. CRC Press, Boca Raton, London, New York (2016). | MR | DOI
[24] , A type of multilevel method for the Steklov eigenvalue problem. IMA J. Numer. Anal. 34 (2014) 592–608. | MR | Zbl | DOI
[25] , , and , An asymptotically exact a posteriori error estimator for non-selfadjoint Steklov eigenvalue problem. Appl. Numer. Math. 156 (2020) 210–227. | MR | Zbl | DOI
[26] , and , Nonconforming finite element approximations of the Steklov eigenvalue problem. Appl. Numer. Math. 59 (2009) 2388–2401. | MR | Zbl | DOI
[27] , and, , Non-conforming Crouzeix-Raviart element approximation for Stekloff eigenvalues in inverse scattering. Adv. Comput. Math. 46 (2020) 1–25. | MR | Zbl | DOI
Cité par Sources :





