Convergence analysis of two finite element methods for the modified Maxwell’s Steklov eigenvalue problem
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 1, pp. 287-301

The modified Maxwell’s Steklov eigenvalue problem is a new problem arising from the study of inverse electromagnetic scattering problems. In this paper, we investigate two finite element methods for this problem and perform the convergence analysis. Moreover, the monotonic convergence of the discrete eigenvalues computed by one of the methods is analyzed.

DOI : 10.1051/m2an/2022001
Classification : 65N25, 65N30
Keywords: Steklov eigenvalues, Maxwell’s equation, finite element method
@article{M2AN_2022__56_1_287_0,
     author = {Gong, Bo},
     title = {Convergence analysis of two finite element methods for the modified {Maxwell{\textquoteright}s} {Steklov} eigenvalue problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {287--301},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {1},
     doi = {10.1051/m2an/2022001},
     mrnumber = {4378548},
     zbl = {1490.65251},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022001/}
}
TY  - JOUR
AU  - Gong, Bo
TI  - Convergence analysis of two finite element methods for the modified Maxwell’s Steklov eigenvalue problem
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 287
EP  - 301
VL  - 56
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022001/
DO  - 10.1051/m2an/2022001
LA  - en
ID  - M2AN_2022__56_1_287_0
ER  - 
%0 Journal Article
%A Gong, Bo
%T Convergence analysis of two finite element methods for the modified Maxwell’s Steklov eigenvalue problem
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 287-301
%V 56
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022001/
%R 10.1051/m2an/2022001
%G en
%F M2AN_2022__56_1_287_0
Gong, Bo. Convergence analysis of two finite element methods for the modified Maxwell’s Steklov eigenvalue problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 1, pp. 287-301. doi: 10.1051/m2an/2022001

[1] A. B. Andreev and T. D. Todorov, Isoparametric finite-element approximation of a Steklov eigenvalue problem. IMA J. Numer. Anal. 24 (2004) 309–322. | MR | Zbl

[2] D. N. Arnold, R. S. Falk and R. Winther, Multigrid in H ( div ) and H ( curl ) . Numer. Math. 85 (2000) 197–217. | MR | Zbl

[3] I. Babuška and J. E. Osborn, Eigenvalue problems. In: Handbook of Numerical Analysis, edited by P. G. Ciarlet and J.-L. Lions. Vol. II. Elseveier Science Publishers B.V., North-Holland (1991). | MR | Zbl

[4] S. Bergman and M. Schiffer, Kernel Functions and Elliptic Differential Equations in Mathematical Physics. Academic Press (1953). | MR | Zbl

[5] D. Boffi, Finite element approximation of eigenvalue problems. Acta Numer. 19 (2010) 1–120. | MR | Zbl

[6] J. H. Bramble and J. Osborn, Approximation of Steklov eigenvalues of non-selfadjoint second order elliptic operators. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. Elsevier (1972) 387–408. | MR | Zbl

[7] A. Buffa and P. Ciarlet Jr, On traces for functional spaces related to Maxwell’s equations Part I: an integration by parts formula in Lipschitz polyhedra. Math. Methods Appl. Sci. 24 (2001) 9–30. | MR | Zbl

[8] A. Buffa, M. Costabel and C. Schwab, Boundary element methods for Maxwell’s equations on non-smooth domains. Numer. Math. 92 (2002) 679–710. | MR | Zbl

[9] A. Buffa, M. Costabel and D. Sheen, On traces for 𝐇 ( curl , Ω ) in Lipschitz domains. J. Math. Anal. App. 276 (2002) 845–867. | MR | Zbl

[10] F. Cakoni, D. Colton, S. Meng and P. Monk, Stekloff eigenvalues in inverse scattering. SIAM J. Appl. Math. 76 (2016) 1737–1763. | MR | Zbl

[11] J. Camaño, C. Lackner and P. Monk, Electromagnetic Stekloff eigenvalues in inverse scattering. SIAM J. Math. Anal. 49 (2017) 4376–4401. | MR | Zbl

[12] S. Cogar, D. Colton and P. Monk, Using eigenvalues to detect anomalies in the exterior of a cavity. Inverse Prob. 34 (2018) 085006. | MR | Zbl

[13] C. Conca, M. Vanninathan and J. Planchard, Fluids and Periodic Structures. Wiley (1995). | MR | Zbl

[14] M. Costabel, A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains. Math. Methods Appl. Sci. 12 (1990) 365–368. | MR | Zbl

[15] B. Gong, J. Sun and X. Wu, Finite element approximation of the modified Maxwell’s Stekloff eigenvalues. SIAM J. Numer. Anal. 59 (2021) 2430–2448. | MR | Zbl

[16] M. Halla, Electromagnetic steklov eigenvalues: approximation analysis. ESAIM: M2AN 55 (2021) 57–76. | MR | Zbl | Numdam

[17] I. Harris, F. Cakoni and J. Sun, Transmission eigenvalues and non-destructive testing of anisotropic magnetic materials with voids. Inverse Prob. 30 (2014) 035016. | MR | Zbl

[18] R. Hiptmair and C. Schwab, Natural boundary element methods for the electric field integral equation on polyhedra. SIAM J. Numer. Anal. 40 (2002) 66–86. | MR | Zbl

[19] Q. Li, Q. Lin and H. Xie, Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations. App. Math. 58 (2013) 129–151. | MR | Zbl

[20] J. Liu, J. Sun and T. Turner, Spectral indicator method for a non-selfadjoint Steklov eigenvalue problem. J. Sci. Comput. 79 (2019) 1814–1831. | MR | Zbl | DOI

[21] P. Monk, Finite Element Methods for Maxwell’s Equations. Oxford University Press (2003). | MR | Zbl | DOI

[22] D. Mora, G. Rivera and R. Rodríguez, A virtual element method for the Steklov eigenvalue problem. Math. Models Methods Appl. Sci. 25 (2015) 1421–1445. | MR | Zbl | DOI

[23] J. Sun and A. Zhou, Finite Element Methods for Eigenvalue Problems. CRC Press, Boca Raton, London, New York (2016). | MR | DOI

[24] H. Xie, A type of multilevel method for the Steklov eigenvalue problem. IMA J. Numer. Anal. 34 (2014) 592–608. | MR | Zbl | DOI

[25] F. Xu, M. Yue, Q. Huang and H. Ma, An asymptotically exact a posteriori error estimator for non-selfadjoint Steklov eigenvalue problem. Appl. Numer. Math. 156 (2020) 210–227. | MR | Zbl | DOI

[26] Y. Yang, Q. Li and S. Li, Nonconforming finite element approximations of the Steklov eigenvalue problem. Appl. Numer. Math. 59 (2009) 2388–2401. | MR | Zbl | DOI

[27] Y. Yang, Y. Zhang and, H. Bi, Non-conforming Crouzeix-Raviart element approximation for Stekloff eigenvalues in inverse scattering. Adv. Comput. Math. 46 (2020) 1–25. | MR | Zbl | DOI

Cité par Sources :