Electromagnetic Steklov eigenvalues: approximation analysis
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 1, pp. 57-76

We continue the work of Camano et al. [SIAM J. Math. Anal. 49 (2017) 4376–4401] on electromagnetic Steklov eigenvalues. The authors recognized that in general the eigenvalues do not correspond to the spectrum of a compact operator and hence proposed a modified eigenvalue problem with the desired properties. The present article considers the original and the modified electromagnetic Steklov eigenvalue problem. We cast the problems as eigenvalue problem for a holomorphic operator function A(⋅). We construct a “test function operator function” T(⋅) so that A(λ) is weakly T(λ)-coercive for all suitable λ, i.e. T(λ)*A(λ) is a compact perturbation of a coercive operator. The construction of T(⋅) relies on a suitable decomposition of the function space into subspaces and an apt sign change on each subspace. For the approximation analysis, we apply the framework of T-compatible Galerkin approximations. For the modified problem, we prove that convenient commuting projection operators imply T-compatibility and hence convergence. For the original problem, we require the projection operators to satisfy an additional commutator property which concerns the tangential trace. The existence and construction of such projection operators remain open questions.

DOI : 10.1051/m2an/2020075
Classification : 35J25, 35R30, 65H17, 65N25
Keywords: Steklov eigenvalues, nondestructive testing, T-coercivity
@article{M2AN_2021__55_1_57_0,
     author = {Halla, Martin},
     title = {Electromagnetic {Steklov} eigenvalues: approximation analysis},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {57--76},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {1},
     doi = {10.1051/m2an/2020075},
     mrnumber = {4216830},
     zbl = {1473.35164},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020075/}
}
TY  - JOUR
AU  - Halla, Martin
TI  - Electromagnetic Steklov eigenvalues: approximation analysis
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 57
EP  - 76
VL  - 55
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020075/
DO  - 10.1051/m2an/2020075
LA  - en
ID  - M2AN_2021__55_1_57_0
ER  - 
%0 Journal Article
%A Halla, Martin
%T Electromagnetic Steklov eigenvalues: approximation analysis
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 57-76
%V 55
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020075/
%R 10.1051/m2an/2020075
%G en
%F M2AN_2021__55_1_57_0
Halla, Martin. Electromagnetic Steklov eigenvalues: approximation analysis. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 1, pp. 57-76. doi: 10.1051/m2an/2020075

C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21 (1998) 823–864. | MR | Zbl | DOI

D. N. Arnold, R. S. Falk and R. Winther, Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Amer. Math. Soc. (N.S.) 47 (2010) 281–354. | MR | Zbl | DOI

I. Babuška and J. Osborn, Eigenvalue problems. In: Vol. 2 of Finite Element Methods (Part 1), Handbook of Numerical Analysis. Elsevier (1991) 641–787. | MR | Zbl | DOI

J. M. Ball, Y. Capdeboscq and B. Tsering-Xiao, On uniqueness for time harmonic anisotropic Maxwell’s equations with piecewise regular coefficients. Math. Models Methods Appl. Sci. 22 (2012) 1250036. | MR | Zbl | DOI

D. Boffi, Finite element approximation of eigenvalue problems. Acta Numer. 19 (2010) 1–120. | MR | Zbl | DOI

A.-S. Bonnet-Bendhia, P. Ciarlet and C. M. Zwölf, Time harmonic wave diffraction problems in materials with sign-shifting coefficients. J. Comput. Appl. Math. 234 (2010) 1912–1919. | MR | Zbl | DOI

A. Buffa, Remarks on the discretization of some noncoercive operator with applications to heterogeneous maxwell equations. SIAM J. Numer. Anal. 43 (2005) 1–18. | MR | Zbl | DOI

A. Buffa, M. Costabel and D. Sheen, On traces for H ( curl , Ω ) in Lipschitz domains. J. Math. Anal. Appl. 276 (2002) 845–867. | MR | Zbl | DOI

F. Cakoni and D. Colton, Qualitative methods in inverse scattering theory. In: An introduction: Interaction of Mechanics and Mathematics. Springer-Verlag, Berlin-Heidelberg (2006). | MR | Zbl

F. Cakoni, D. Colton, S. Meng and P. Monk, Stekloff eigenvalues in inverse scattering. SIAM J. Appl. Math. 76 (2016) 1737–1763. | MR | Zbl | DOI

F. Cakoni, D. Colton and H. Haddar, Inverse scattering theory and transmission eigenvalues. In: Vol. 88 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2016). | MR | Zbl

J. Camaño, C. Lackner and P. Monk, Electromagnetic Stekloff eigenvalues in inverse scattering. SIAM J. Math. Anal. 49 (2017) 4376–4401. | MR | Zbl | DOI

M. Costabel, A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains. Math. Methods Appl. Sci. 12 (1990) 365–368. | MR | Zbl | DOI

M. Dauge, Elliptic boundary value problems on corner domains. In: Vol. 1341 of Smoothness and Asymptotics of Solutions. Lecture Notes in Mathematics Springer, Berlin-Heidelberg (1988). | MR | Zbl

A. Ern and J.-L. Guermond, Mollification in strongly Lipschitz domains with application to continuous and discrete de Rham complexes. Comput. Methods Appl. Math. 16 (2016) 51–75. | MR | Zbl | DOI

M. Halla, Electromagnetic Stekloff eigenvalues: existence and behavior in the selfadjoint case. Preprint (2019). | arXiv | Zbl

M. Halla, Galerkin approximation of holomorphic eigenvalue problems: weak T-coercivity and T-compatibility. Preprint (2019). | arXiv | MR | Zbl

O. Karma, Approximation in eigenvalue problems for holomorphic Fredholm operator functions. I. Numer. Funct. Anal. Optim. 17 (1996) 365–387. | MR | Zbl | DOI

O. Karma, Approximation in eigenvalue problems for holomorphic Fredholm operator functions. II. (Convergence rate). Numer. Funct. Anal. Optim. 17 (1996) 389–408. | MR | Zbl | DOI

V. Kozlov and V. Maz’Ya, Differential equations with operator coefficients with applications to boundary value problems for partial differential equations. Springer Monographs in Mathematics, Springer, Berlin-Heidelberg (1999). | MR | Zbl

Cité par Sources :