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CONVERGENCE ANALYSIS OF TWO FINITE ELEMENT METHODS FOR THE
MODIFIED MAXWELL’S STEKLOV EIGENVALUE PROBLEM

Bo Gong*

Abstract. The modified Maxwell’s Steklov eigenvalue problem is a new problem arising from the
study of inverse electromagnetic scattering problems. In this paper, we investigate two finite element
methods for this problem and perform the convergence analysis. Moreover, the monotonic convergence
of the discrete eigenvalues computed by one of the methods is analyzed.
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1. Introduction

The Steklov eigenvalue problem is governed by the elliptic equation with the eigen-parameter in the bound-
ary condition. It has many applications in physics, e.g., surface waves [4] and stability of mechanical oscillators
immersed in a viscous fluid [13]. Various numerical methods for the Steklov eigenvalue problem have been
developed and analyzed [1,6,19,22,24,26]. Recently, a new application was considered in [10] using the Steklov
eigenvalues as a target signature in nondestructive testing (see e.g., [12, 17] for different choices of target sig-
natures). The associated non-selfadjoint Steklov eigenvalue problem for inhomogeneous absorbing media has
drawn significant attention in the numerical analysis community [20,25,27].

Most earlier papers on Steklov eigenvalues focused on the Laplace or the Helmholtz equation. For the
Maxwell’s equation, the so-called modified Steklov eigenvalues was studied in [11] for an electromagnetic inverse
scattering problem. In the same paper a finite element method was proposed for computing the eigenvalues.
The term “modified” refers to the insertion of a boundary-to-boundary operator 𝒮 into the standard Steklov
eigenvalue problem. Through this modification the authors showed the compactness of the corresponding solu-
tion operator and the existence of the eigenvalues. For numerical analysis about this eigenvalue problem, to
our knowledge, there exist only two papers [15, 16]. Halla [16] provided a general framework considering the
original and the modified Maxwell’s Steklov eigenvalue problem, which guaranteed that the Galerkin approx-
imation is convergent as long as certain commuting projection operator exists. While in [15], a specific finite
element method was considered and a convergence order of the corresponding discrete eigenvalues were obtained.
However, neither of these two results cover the method proposed in [11].

The difference between the two finite element methods, the one used in [11] and the one considered in [15],
is how 𝒮 is discretized. The boundary-to-boundary operator 𝒮 projects vectors into the surface-divergence-free
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space. It has two equivalent representations on the continuous level, but the corresponding finite element dis-
cretizations differ substantially. We denote by 𝒮ℎ the discretization used in [11], and by ̃︀𝒮ℎ the one in [15]. What
is crucial of ̃︀𝒮ℎ is that it maintains the property of 𝒮 to map vectors into the surface-divergence-free space.
In contrast, 𝒮ℎ does not, i.e., it has a range not surface-divergence-free. Despite of this difference between ̃︀𝒮ℎ

and 𝒮ℎ, they display similar numerical behaviour (see [15]). Both the eigenvalues 𝜆ℎ and ̃︀𝜆ℎ computed by the
method using 𝒮ℎ and ̃︀𝒮ℎ respectively, converge to the exact values. Moreover, 𝜆ℎ seems to be more accurate
than ̃︀𝜆ℎ. This motivates us to analyze the finite element method that uses 𝒮ℎ, which is the main goal of the
current paper.

As mentioned above, the major difficulty in the analysis lies in the fact that the range of 𝒮ℎ is not surface-
divergence-free. To this end, we define a solution operator slightly different than that from [11] so that its domain
and range are the 𝐿2 space other than the surface-divergence-free space. Both finite element methods (with ̃︀𝒮ℎ

and 𝒮ℎ) under this 𝐿2-to-𝐿2 framework are analyzed. The main tools used here are the Helmholtz decomposition
and the Babuška–Osborn theory for eigenvalue problems [3] (see [5, 23] for some recent developments). In
addition, we prove under some conditions the monotonic convergence of ̃︀𝜆ℎ and an inequality between 𝜆ℎ and̃︀𝜆ℎ.

The rest of the paper is arranged as follows. In Section 2, we introduce the notations and present some useful
estimations and identities. Sections 3 and 4 contain the error analysis for the finite element methods using ̃︀𝒮ℎ

and 𝒮ℎ, respectively. Convergence in norm of the discrete solution operators and the convergence order of the
associated eigenvalues are obtained. In Section 5, we prove some other properties for the discrete eigenvalues.

2. Preliminary

Let Ω ⊂ R3 be a simply connected bounded Lipschitz polyhedron with a connected boundary Γ. Let 𝜈 be the
unit outward normal to Γ. Denote by 𝐻𝑠(Ω) and 𝐻𝑡(Γ) the standard Sobolev spaces for 𝑠 ∈ R and 𝑡 ∈ [−1, 1],
respectively. Define

𝐻𝑠(Ω) := (𝐻𝑠(Ω))3, 𝐿2(Ω) :=
(︀
𝐿2(Ω)

)︀3
, 𝐿2(Γ) :=

(︀
𝐿2(Γ)

)︀3
,

𝐻(curl; Ω) :=
{︀
𝑢 ∈ 𝐿2(Ω) | curl𝑢 ∈ 𝐿2(Ω)

}︀
,

𝐻(div; Ω) :=
{︀
𝑢 ∈ 𝐿2(Ω) |div 𝑢 ∈ 𝐿2(Ω)

}︀
,

𝐻0(div; Ω) := {𝑢 ∈ 𝐻(div; Ω) |𝜈 · 𝑢 = 0 a.e. on Γ},
𝐿2

𝑡 (Γ) :=
{︀
𝜇 ∈ 𝐿2(Γ) |𝜈 · 𝜇 = 0 a.e. on Γ

}︀
.

We denote the norm of 𝐻𝑠(Ω), 𝐿2
𝑡 (Γ) and 𝐻𝑡(Γ) as ‖ · ‖𝑠,Ω, ‖ · ‖0,Γ and ‖ · ‖𝑡,Γ, respectively. The norm of

𝐻(curl; Ω) is ‖ · ‖curl,Ω with ‖𝑢‖2curl,Ω := ‖𝑢‖20,Ω + ‖curl𝑢‖20,Ω.
Denote by Γ𝑗 , 𝑗 = 1, . . . , 𝐽 , the boundary faces of Ω. For 𝜓 ∈ 𝐿2(Γ), let 𝜓𝑗 = 𝜓|Γ𝑗

. The spaces 𝐻1+𝑡(Γ) and
𝐻𝑡
−(Γ) for 𝑡 > 0 are defined as [8]

𝐻1+𝑡(Γ) =
{︀
𝜓 ∈ 𝐻1(Γ) |𝜓𝑗 ∈ 𝐻1+𝑡(Γ𝑗)

}︀
and 𝐻𝑡

−(Γ) =
{︀
𝜑 ∈ 𝐿2

𝑡 (Γ) |𝜑𝑗 ∈ 𝐻𝑡(Γ𝑗)2
}︀
,

with ‖𝜓‖21+𝑡,Γ := ‖𝜓‖21,Γ +
∑︀𝐽

𝑗=1‖𝜓𝑗‖21+𝑡,Γ𝑗
and ‖𝜑‖2𝑡,−,Γ :=

∑︀𝐽
𝑗=1

⃦⃦
𝜑𝑗

⃦⃦2

𝐻𝑡(Γ𝑗)2
.

Let
𝛾𝑡 :

(︀
𝐶∞

(︀
Ω

)︀)︀3 → 𝐿2
𝑡 (Γ) and 𝛾𝑇 :

(︀
𝐶∞

(︀
Ω

)︀)︀3 → 𝐿2
𝑡 (Γ)

be the trace operators that maps 𝑣 to 𝜈 × 𝑣|Γ and (𝜈 × 𝑣|Γ) × 𝜈, respectively. The operators 𝛾𝑡 and 𝛾𝑇 can
be continuously extended to 𝐻(curl; Ω). Denote by 𝑣𝑇 = 𝛾𝑇 𝑣 the tangential component of 𝑣 on the boundary.
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Let ∇Γ and curlΓ denote, respectively, the surface gradient and surface vector curl, which can be defined on
𝐻1/2(Γ). The surface divergence and surface scalar curl, denoted by divΓ and curlΓ, are respectively the duals
of −∇Γ and curlΓ, i.e.,

⟨𝜑,∇Γ𝜓⟩ = −⟨divΓ𝜑, 𝜓⟩, ⟨𝜑, curlΓ𝜓⟩ = ⟨curlΓ𝜑, 𝜓⟩.

Define the surface-divergence-free space as

𝐻
(︀
div0

Γ; Γ
)︀

:=
{︀
𝜇 ∈ 𝐿2

𝑡 (Γ) |divΓ𝜇 = 0
}︀
.

For more details on these operators and spaces, we refer the readers to [7, 9].
In this paper, we consider the modified Maxwell’s Steklov eigenvalue problem of finding (𝜆,𝑢) ∈ R ×

𝐻(curl; Ω) such that

(curl𝑢, curl𝑣)− 𝜅2(𝜖𝑟𝑢,𝑣) = −𝜆⟨𝒮𝑢𝑇 ,𝑣𝑇 ⟩, ∀𝑣 ∈ 𝐻(curl; Ω). (2.1)

Here 𝜅 is the wavenumber which is real and positive and 𝜖𝑟 is the relative permittivity. Assume that the media is
isotropic and dielectric, i.e., 𝜖𝑟 is a real scalar function. In addition, we require that 𝜖𝑟 is smooth, bounded and
away from zero. More precisely, there exist constants 𝛼 > 0 and 𝛽 > 0 such that 𝜖𝑟 ∈ 𝐻1(Ω) and 𝛼 6 𝜖𝑟 6 𝛽.
For 𝑢,𝑣 ∈ 𝐿2(Ω) and 𝑓 , 𝑔 ∈ 𝐿2

𝑡 (Γ), define

(𝑢,𝑣) =
∫︁

Ω

𝑢(𝑥) · 𝑣(𝑥) d𝑉 (𝑥) and ⟨𝑓 , 𝑔⟩ =
∫︁

Γ

𝑓(𝑥) · 𝑔(𝑥) d𝐴(𝑥).

We also use ⟨·, ·⟩ to denote certain duality of spaces on the boundary. There are two equivalent ways to define
the surface-divergence-free projection operator 𝒮. One is 𝒮𝜇 = curlΓ𝑞 with 𝑞 ∈ 𝐻1(Γ)/R satisfying

⟨curlΓ𝑞, curlΓ𝜓⟩ = ⟨𝜇, curlΓ𝜓⟩, ∀𝜓 ∈ 𝐻1(Γ). (2.2)

The above definition can be applied on, say, 𝜇 ∈ 𝛾𝑇 𝐻(curl; Ω) or 𝜇 ∈ 𝐿2
𝑡 (Γ). The other is 𝒮𝜇 = 𝜇 +∇Γ𝑝 with

𝑝 ∈ 𝐻1(Γ)/R being the solution of

⟨∇Γ𝑝,∇Γ𝜓⟩ = −⟨𝜇,∇Γ𝜓⟩, ∀𝜓 ∈ 𝐻1(Γ), (2.3)

which can be applied on, say, 𝜇 ∈ 𝛾𝑡𝐻(curl; Ω) or 𝜇 ∈ 𝐿2
𝑡 (Γ).

Let 𝜏ℎ be a regular tetrahedral mesh for polyhedron Ω with size ℎ. The faces of 𝜏ℎ on Γ induce a triangular
mesh for Γ. We use the notations in Chapter 5 of [21] to denote by 𝑊ℎ ⊂ 𝐻(div,Ω) the divergence-conforming
finite element space of degree 𝑘, by 𝑉ℎ ⊂ 𝐻(curl; Ω) the curl-conforming finite element space of degree 𝑘, and
by 𝑈ℎ ⊂ 𝐻1(Ω) the Lagrange element space of degree 𝑘. In addition, denote by 𝑈Γ

ℎ ⊂ 𝐻1(Γ) the Lagrange
element space of degree 𝑘 on the boundary. We shall mainly discuss the case when 𝑘 = 1.

Denote by 𝜋1
ℎ : 𝐻(curl; Ω) ⊃ 𝒱 → 𝑉ℎ and 𝜋2

ℎ : 𝐻(div; Ω) ⊃ 𝒲 →𝑊ℎ the interpolation operators. Here 𝒱 and
𝒲 are suitable subspaces such that the interpolations are well-defined and bounded (see e.g., [21], Lem. 5.38).
The finite element spaces 𝑊ℎ, 𝑉ℎ and 𝑈ℎ satisfy the de Rham complex (see e.g., [21], (5.59)), which implies

curl𝑉ℎ ⊂𝑊ℎ, ∇𝑈ℎ ⊂ 𝑉ℎ, and curl𝜋1
ℎ𝑣 = 𝜋2

ℎcurl𝑣 for 𝑣 ∈ 𝒱. (2.4)

Moreover, the kernel of curl in 𝑉ℎ is ∇𝑈ℎ (see e.g., [2]).
Based on the definitions of 𝒮 by (2.2) and (2.3), the two finite element approximations ̃︀𝒮ℎ and 𝒮ℎ are defined

as follows. ̃︀𝒮ℎ : 𝐿2
𝑡 (Γ) → 𝐿2

𝑡 (Γ) is such that ̃︀𝒮ℎ𝜇 = curlΓ𝑞ℎ with 𝑞ℎ ∈ 𝑈Γ
ℎ /R being the solution of

⟨curlΓ𝑞ℎ, curlΓ𝜓ℎ⟩ = ⟨𝜇, curlΓ𝜓ℎ⟩, ∀𝜓ℎ ∈ 𝑈Γ
ℎ . (2.5)

And 𝒮ℎ : 𝐿2
𝑡 (Γ) → 𝐿2

𝑡 (Γ) is such that 𝒮ℎ𝜇 = 𝜇 +∇Γ𝑝ℎ with 𝑝ℎ ∈ 𝑈Γ
ℎ /R being the solution of

⟨∇Γ𝑝ℎ,∇Γ𝜓ℎ⟩ = −⟨𝜇,∇Γ𝜓ℎ⟩, ∀𝜓ℎ ∈ 𝑈Γ
ℎ . (2.6)
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Note that ̃︀𝒮ℎ and 𝒮ℎ can be defined on larger spaces than 𝐿2
𝑡 (Γ).

In the rest of this section, we collect some results that will be used later. All except the last two of these
lemmas can be found in [15] and references therein. Let 𝑍 ⊂ 𝐻(curl; Ω) and 𝑍ℎ ∈ 𝑉ℎ be such that

𝑍 =
{︀
𝑢 ∈ 𝐻(curl; Ω) | (𝜖𝑟𝑢,∇𝑝) = 0, ∀𝑝 ∈ 𝐻1(Ω)

}︀
and 𝑍ℎ = {𝑢ℎ ∈ 𝑉ℎ | (𝜖𝑟𝑢ℎ,∇𝑝ℎ) = 0, ∀𝑝ℎ ∈ 𝑈ℎ}.

Lemma 2.1 (see e.g., [15], Lem. 2.1 and Sect. 3.1). The spaces 𝐻(curl; Ω) and 𝑉ℎ can be decomposed, respec-
tively, as

𝐻(curl; Ω) = 𝑍 ⊕∇(𝐻1(Ω)/R) and 𝑉ℎ = 𝑍ℎ ⊕∇(𝑈ℎ/R).

Definition 2.2. Denote by 𝒫 : 𝐻(curl; Ω) → 𝑍 and 𝒫ℎ : 𝑉ℎ → 𝑍ℎ, respectively, the projection operator
according to Lemma 2.1.

Lemma 2.3 (see e.g., [15], Lem. 2.2). For 0 < 𝑠 < 𝑠Ω with some parameter 𝑠Ω > 0 dependent on the geometry
of Ω, it holds that

𝑍 ⊂ 𝐻(curl; Ω) ∩𝐻0(div; Ω) ⊂ 𝐻1/2+𝑠(Ω) and 𝛾𝑇𝑍 ⊂ 𝐻𝑠
−(Γ),

and for 𝑢 ∈ 𝑍

‖𝑢‖1/2+𝑠,Ω 6 𝐶‖𝑢‖curl,Ω and ‖𝑢𝑇 ‖𝐻𝑠
−(Γ) 6 𝐶‖𝑢‖curl,Ω.

From now on we use 𝑠 to represent some positive number which is less than 𝑠Ω.

Lemma 2.4 (see e.g., the proof of Lem. 3.4 from [15]). For 𝑧ℎ ∈ 𝑍ℎ, it holds

‖(𝐼 − 𝒫)𝑧ℎ‖curl,Ω 6 𝐶ℎ
1/2+𝑠‖𝑧ℎ‖curl,Ω.

Next, we consider the continuous and discrete source problems, as well as the associated operators. Denote
by 𝑎(·, ·) and 𝑎+(·, ·) the sesquilinear forms on 𝐻(curl; Ω)×𝐻(curl; Ω) such that

𝑎(𝑢,𝑣) = (curl𝑢, curl𝑣)− 𝜅2(𝜖𝑟𝑢,𝑣),
𝑎+(𝑢,𝑣) = (curl𝑢, curl𝑣) + (𝜖𝑟𝑢,𝑣).

Formally, let ℒ : 𝐻
(︀
div0

Γ; Γ
)︀
→ 𝐻(curl; Ω), ℒℎ : 𝐻

(︀
div0

Γ; Γ
)︀
→ 𝑉ℎ, ℒ+ : 𝐻

(︀
div0

Γ; Γ
)︀
→ 𝐻(curl; Ω), ℒ+

ℎ :
𝐻

(︀
div0

Γ; Γ
)︀
→ 𝑉ℎ, 𝒦 : 𝐿2(Ω) → 𝑍 and 𝒦ℎ : 𝐿2(Ω) → 𝑍ℎ be the operators such that

𝑎(ℒ𝑓 ,𝑣) = ⟨𝑓 ,𝑣𝑇 ⟩, ∀𝑣 ∈ 𝐻(curl; Ω), (2.7)
𝑎(ℒℎ𝑓 ,𝑣ℎ) = ⟨𝑓 ,𝑣ℎ,𝑇 ⟩, ∀𝑣ℎ ∈ 𝑉ℎ, (2.8)
𝑎+

(︀
ℒ+𝑓 ,𝑣

)︀
= ⟨𝑓 ,𝑣𝑇 ⟩, ∀𝑣 ∈ 𝐻(curl; Ω), (2.9)

𝑎+

(︀
ℒ+

ℎ 𝑓 ,𝑣ℎ

)︀
= ⟨𝑓 ,𝑣ℎ,𝑇 ⟩, ∀𝑣ℎ ∈ 𝑉ℎ, (2.10)

𝑎+(𝒦𝑤,𝑣) = −(𝜅2 + 1)(𝜖𝑟𝑤,𝑣), ∀𝑣 ∈ 𝑍, (2.11)
𝑎+(𝒦ℎ𝑤,𝑣ℎ) = −(𝜅2 + 1)(𝜖𝑟𝑤,𝑣ℎ), ∀𝑣ℎ ∈ 𝑍ℎ, (2.12)

for 𝑓 ∈ 𝐻
(︀
div0

Γ; Γ
)︀

and 𝑤 ∈ 𝐿2(Ω). Note that the domain of ℒ,ℒℎ,ℒ+ and ℒ+
ℎ are set to be 𝐻

(︀
div0

Γ; Γ
)︀
, a

strict subset of 𝐿2
𝑡 (Γ). The source problems (2.9)–(2.12) are clearly well-posed. For the well-posedness of (2.7)

and (2.8), we assume the uniqueness, that is, we assume that 𝜅2 is not a Neumann eigenvalue defined below.
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Definition 2.5. We call 𝜅2 a Neumann eigenvalue of the Maxwell’s equation if there exists a non-trivial function
𝑢 such that

curl curl𝑢− 𝜅2𝜖𝑟𝑢 = 0, in Ω,
𝜈 × curl𝑢 = 0, on Γ.

Definition 2.6. Let Λ = {ℎ𝑛}∞𝑛=1 be such that ℎ𝑛 → 0 as 𝑛→∞. Let 𝑋 denote a general Hilbert space. A set
{ℱℎ |𝑋 → 𝑋,ℎ ∈ Λ} of bounded linear operators is called collectively compact if, for each bounded set 𝑈 ⊂ 𝑋,
the image set {ℱℎ𝑢 | ∀𝑢 ∈ 𝑈,∀ℎ ∈ Λ} is relatively compact.

It can be shown that 𝒦 is compact and {𝒦ℎ}ℎ is collectively compact as operators from 𝐿2(Ω) to itself (see
e.g., [15], Sects. 2 and 3). As a consequence the source problems (2.7) and (2.8) are well-posed. We gather in
the following lemma the well-posedness of the problems (2.7)–(2.10).

Lemma 2.7 (see e.g., [21], Thm. 2.51, [15], Sects. 2 and 3). For ℎ small enough, the operators (𝐼 +𝒦)−1 and
(𝐼+𝒦ℎ)−1 exist and are (uniformly in ℎ) bounded from 𝐿2(Ω) to 𝐿2(Ω). Moreover, ℒ and ℒℎ have the following
representations,

ℒ = (𝐼 +𝒦)−1ℒ+ and ℒℎ = (𝐼 +𝒦ℎ)−1ℒ+
ℎ .

ℒ+, ℒ+
ℎ , ℒ and ℒℎ are (uniformly) bounded.

It is easily seen that ran(ℒ) ⊂ 𝑍 and ran(ℒℎ) ⊂ 𝑍ℎ. One has the following error estimate.

Lemma 2.8 ([15], Thm. 3.7). ‖ℒ − ℒℎ‖ 6 𝐶ℎ1/2.

To obtain regularity of the solution of (2.2) and (2.3), we shall apply the following result.

Lemma 2.9 ([8], Thm. 8). Given 𝑔 ∈ 𝐻𝑟(Γ) with 𝑟 > −1, the solution 𝑝 ∈ 𝐻1(Γ)/R of

−∆Γ𝑝 = 𝑔

admits 𝑝 ∈ 𝐻1+𝑡(Γ)/R with 𝑡 < min{𝑠Γ, 1 + 𝑟}, where 𝑠Γ > 0 is some parameter depending on the shape of Γ.

A direct use of the definitions of 𝒮, ̃︀𝒮ℎ and 𝒮ℎ gives one the following.

Lemma 2.10. The operators 𝒮, ̃︀𝒮ℎ and 𝒮ℎ are linear and bounded from 𝐿2
𝑡 (Γ) to 𝐿2

𝑡 (Γ). Moreover, they are
orthogonal projection operators under the 𝐿2

𝑡 (Γ) inner product, and given 𝑓 , 𝑔 ∈ 𝐿2
𝑡 (Γ), it holds that

⟨𝒮𝑓 , 𝑔⟩ = ⟨𝒮𝑓 ,𝒮𝑔⟩ = ⟨𝑓 ,𝒮𝑔⟩ = ⟨𝒮ℎ𝑓 ,𝒮𝑔⟩,

⟨ ̃︀𝒮ℎ𝑓 , 𝑔⟩ = ⟨ ̃︀𝒮ℎ𝑓 , ̃︀𝒮ℎ𝑔⟩ = ⟨𝑓 , ̃︀𝒮ℎ𝑔⟩ = ⟨𝒮𝑓 , ̃︀𝒮ℎ𝑔⟩ = ⟨𝒮ℎ𝑓 , ̃︀𝒮ℎ𝑔⟩,
⟨𝒮ℎ𝑓 , 𝑔⟩ = ⟨𝒮ℎ𝑓 ,𝒮ℎ𝑔⟩ = ⟨𝑓 ,𝒮ℎ𝑔⟩,

which implies that on 𝐿2
𝑡 (Γ) we have

𝒮𝒮ℎ = 𝒮ℎ𝒮 = 𝒮, ̃︀𝒮ℎ𝒮 = 𝒮 ̃︀𝒮ℎ = ̃︀𝒮ℎ, ̃︀𝒮ℎ𝒮ℎ = 𝒮ℎ
̃︀𝒮ℎ = ̃︀𝒮ℎ.

Proof. Given 𝑓 , 𝑔 ∈ 𝐿2
𝑡 (Γ), we have by definition 𝜑ℎ ∈ 𝑈Γ

ℎ , 𝜑 ∈ 𝐻1(Γ) and 𝜓 ∈ 𝐻1(Γ) such that 𝒮ℎ𝑓 =
𝑓 +∇Γ𝜑ℎ, 𝒮𝑓 = curlΓ𝜑 and 𝒮𝑔 = curlΓ𝜓. Then by the definition of 𝒮𝑓 and 𝒮𝑔 we have the following

⟨(𝐼 − 𝒮)𝑓 ,𝒮𝑔⟩ = ⟨(𝐼 − 𝒮)𝑓 , curlΓ𝜓⟩ = 0, ⟨(𝐼 − 𝒮ℎ)𝑓 ,𝒮𝑔⟩ = ⟨−∇Γ𝜑ℎ, curlΓ𝜓⟩ = 0.

Hence we have the first line of equalities verified, by which we can show that

⟨𝒮𝒮ℎ𝑓 , 𝑔⟩ = ⟨𝒮ℎ𝑓 ,𝒮𝑔⟩ = ⟨𝑓 ,𝒮𝑔⟩ = ⟨𝒮𝑓 , 𝑔⟩,

which means 𝒮𝒮ℎ = 𝒮 on 𝐿2
𝑡 (Γ). The rest can be proved similarly. �
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Note that 𝒮 can be defined on 𝛾𝑇 𝐻(curl; Ω), and 𝒮 is still self-adjoint on 𝛾𝑇 𝐻(curl; Ω) (see [11], Lem. 3.1).
In [11] the solution operator of (2.1) is defined from 𝐻

(︀
div0

Γ; Γ
)︀

to itself by 𝒮𝛾𝑇ℒ, which is inconvenient for
the current paper. Instead, we define for (2.1) another solution operator 𝒯 such that

𝒯 : 𝐿2
𝑡 (Γ) → 𝐿2

𝑡 (Γ), 𝒯 = 𝒮𝛾𝑇ℒ𝒮.

We show in the following that 𝒯 is compact and indeed represents the spectrum of (2.1).

Lemma 2.11. 𝒯 is compact and self-adjoint. There is a bijection between the eigenpairs of 𝒯 and those of
(2.1) for nonzero eigenvalues.

Proof. Given 𝑓 ∈ 𝐿2
𝑡 (Γ), 𝑞 ∈ 𝐻1(Γ)/R in (2.2) is well-defined, thus 𝒮𝑓 ∈ 𝐻

(︀
div0

Γ; Γ
)︀
. Then due to the well-

posedness of ℒ, it holds 𝑢 := ℒ𝒮𝑓 ∈ 𝑍. Using the remark of [14], we have that curlΓ𝑢𝑇 ∈ 𝐿2(Γ) and

‖curlΓ𝑢𝑇 ‖0,Γ = ‖𝜈 · curl𝑢‖0,Γ 6 𝐶‖𝑢‖curl,Ω + 𝐶‖𝒮𝑓‖0,Γ 6 𝐶‖𝒮𝑓‖0,Γ 6 𝐶‖𝑓‖0,Γ. (2.13)

Therefore, the regularity result of Lemma 2.9 indicates that for the solution 𝑞 ∈ 𝐻1(Γ)/R of

⟨curlΓ𝑞, curlΓ𝜓⟩ = ⟨𝑢𝑇 , curlΓ𝜓⟩, ∀𝜓 ∈ 𝐻1(Γ),

it holds that 𝑞 ∈ 𝐻1+𝑡(Γ)/R with 𝑡 < min{𝑠Γ, 1}. Consequently,

𝒯 𝑓 = 𝒮𝑢𝑇 = curlΓ𝑞 ∈ 𝐻𝑡
−(Γ) ∩𝐻

(︀
div0

Γ; Γ
)︀
.

Since 𝐻𝑡
−(Γ) ∩𝐻

(︀
div0

Γ; Γ
)︀

is compactly embedded in 𝐿2
𝑡 (Γ), 𝒯 is well-defined and compact.

Given 𝑓 , 𝑔 ∈ 𝐿2
𝑡 (Γ), we have

⟨𝒯 𝑓 , 𝑔⟩ = ⟨𝒮𝛾𝑇ℒ𝒮𝑓 , 𝑔⟩ = ⟨𝛾𝑇ℒ𝒮𝑓 ,𝒮𝑔⟩ = 𝑎(ℒ𝒮𝑓 ,ℒ𝒮𝑔)
= ⟨𝒮𝑓 , 𝛾𝑇ℒ𝒮𝑔⟩ = ⟨𝑓 ,𝒮𝛾𝑇ℒ𝒮𝑔⟩ = ⟨𝑓 , 𝒯 𝑔⟩.

Hence 𝒯 is self-adjoint. Note that we have used the assumption that 𝜖𝑟 is real.
Given an eigenpair (𝜆,𝑢) of (2.1), 𝜆 ̸= 0, we have ℒ(𝜆𝒮𝑢𝑇 ) = 𝑢. Hence 𝒮𝛾𝑇ℒ(𝜆𝒮𝑢𝑇 ) = 𝒮𝑢𝑇 , i.e.,

(−1/𝜆,𝒮𝑢𝑇 ) is an eigenpair of 𝒯 . On the other hand, given an eigenpair (𝜇,𝑓) of 𝒯 , 𝜇 ̸= 0, then 𝒯 𝑓 = 𝜇𝑓 .
Therefore ℒ(1/𝜇)𝒮𝛾𝑇ℒ𝒮𝑓 = ℒ𝒮𝑓 , i.e., (−1/𝜇,ℒ𝒮𝑓) is an eigenpair of (2.1). �

3. Finite element method using ̃︀𝒮ℎ

For the completeness of the theory, also as a preparation for the next section, we first analyze the finite
element method that uses ̃︀𝒮ℎ as the discretization (see (2.5)). Instead of defining the corresponding solution
operator ̃︀𝒯ℎ (as is done in [15]) from 𝐻

(︀
div0

Γ; Γ
)︀

to 𝐻
(︀
div0

Γ; Γ
)︀
, we shall define it from 𝐿2

𝑡 (Γ) to 𝐿2
𝑡 (Γ). One

consequence is that, the operator ̃︀𝒯ℎ thus defined is self-adjoint on 𝐿2
𝑡 (Γ), while ̃︀𝒯ℎ defined in [15] is not on

𝐻
(︀
div0

Γ; Γ
)︀
.

Consider the discrete eigenvalue problem of finding (̃︀𝜆ℎ,𝑢ℎ) ∈ R× 𝑉ℎ such that

𝑎(𝑢ℎ,𝑣ℎ) = −̃︀𝜆ℎ⟨ ̃︀𝒮ℎ𝑢ℎ,𝑇 ,𝑣ℎ,𝑇 ⟩, ∀𝑣ℎ ∈ 𝑉ℎ. (3.1)

Let the solution operator of (3.1) be defined as

̃︀𝒯ℎ : 𝐿2
𝑡 (Γ) → 𝐿2

𝑡 (Γ), ̃︀𝒯ℎ = ̃︀𝒮ℎ𝛾𝑇ℒℎ
̃︀𝒮ℎ.
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Lemma 3.1. ̃︀𝒯ℎ are uniformly bounded and self-adjoint. There is a bijection between the eigenpairs of (3.1)
and those of ̃︀𝒯ℎ for nonzero eigenvalues.

Proof. Since the range of ̃︀𝒮ℎ is contained 𝐻
(︀
div0

Γ; Γ
)︀
, ℒℎ

̃︀𝒮ℎ are well-defined and uniformly bounded from
𝐿2

𝑡 (Γ) to 𝐿2
𝑡 (Γ). Hence ̃︀𝒯ℎ are well-defined and uniformly bounded. Moreover, for 𝑓 ∈ 𝐿2

𝑡 (Γ), noticing that
𝛾𝑇 (𝐼 − 𝒫)ℒℎ

̃︀𝒮ℎ𝑓 = ∇Γ𝑝 for some 𝑝 ∈ 𝐻1/2(Γ), we have ̃︀𝒮ℎ𝛾𝑇 (𝐼 − 𝒫)ℒℎ
̃︀𝒮ℎ𝑓 = 0. Therefore,

‖̃︀𝒯ℎ‖ = ‖ ̃︀𝒮ℎ𝛾𝑇ℒℎ
̃︀𝒮ℎ‖ = ‖ ̃︀𝒮ℎ𝛾𝑇𝒫ℒℎ

̃︀𝒮ℎ‖ 6 𝐶.

That ̃︀𝒯ℎ is self-adjoint and the correspondence of the eigenpairs between ̃︀𝒯ℎ and (3.1) can be shown in the same
way as in Lemma 2.11. �

Next we prove the convergence of ̃︀𝒯ℎ to 𝒯 .

Theorem 3.2. ‖𝒯 − ̃︀𝒯ℎ‖ → 0.

Proof. We split 𝒯 − ̃︀𝒯ℎ into three terms

𝒯 − ̃︀𝒯ℎ = (𝒮 − ̃︀𝒮ℎ)𝛾𝑇ℒ𝒮 + ̃︀𝒮ℎ𝛾𝑇ℒ(𝒮 − ̃︀𝒮ℎ) + ̃︀𝒮ℎ𝛾𝑇 (ℒ − ℒℎ) ̃︀𝒮ℎ. (3.2)

Given 𝑓 ∈ 𝐿2
𝑡 (Γ), by definition, (𝒮 − ̃︀𝒮ℎ)𝛾𝑇ℒ𝒮𝑓 = curlΓ𝑞 − curlΓ𝑞ℎ with 𝑞 and 𝑞ℎ being the solution of (2.2)

and (2.5), respectively, with 𝜇 = 𝛾𝑇ℒ𝒮𝑓 . As shown in Lemma 2.11, 𝑞 ∈ 𝐻1+𝑡(Γ)/R for 𝑡 < min{𝑠Γ, 1}. Hence
we have that

‖curlΓ𝑞 − curlΓ𝑞ℎ‖0,Γ 6 𝐶ℎ
𝑡‖𝑞‖𝐻1+𝑡(Γ)/R.

Meanwhile, by the inequality (2.2) of [18] and (2.13), we obtain that

‖𝑝‖𝐻1+𝑡(Γ)/R 6 𝐶‖curlΓ𝛾𝑇ℒ𝒮𝑓‖0,Γ 6 𝐶‖𝒮𝑓‖0,Γ 6 𝐶‖𝑓‖0,Γ.

Therefore,

‖(𝒮 − ̃︀𝒮ℎ)𝛾𝑇ℒ‖ 6 𝐶ℎ𝑡 and ‖(𝒮 − ̃︀𝒮ℎ)𝛾𝑇ℒ𝒮‖ 6 𝐶ℎ𝑡.

For the second term of (3.2), we consider its adjoint ( ̃︀𝒮ℎ𝛾𝑇ℒ(𝒮 − ̃︀𝒮ℎ))* = (𝒮 − ̃︀𝒮ℎ)𝛾𝑇ℒ ̃︀𝒮ℎ. In fact, given
𝑓 , 𝑔 ∈ 𝐿2

𝑡 (Γ),

⟨𝑓 , ̃︀𝒮ℎ𝛾𝑇ℒ(𝒮 − ̃︀𝒮ℎ)𝑔⟩ = ⟨ ̃︀𝒮ℎ𝑓 , 𝛾𝑇ℒ(𝒮 − ̃︀𝒮ℎ)𝑔⟩ = 𝑎(ℒ ̃︀𝒮ℎ𝑓 ,ℒ(𝒮 − ̃︀𝒮ℎ)𝑔)

= ⟨𝛾𝑇ℒ ̃︀𝒮ℎ𝑓 , (𝒮 − ̃︀𝒮ℎ)𝑔⟩ = ⟨𝒮𝛾𝑇ℒ ̃︀𝒮ℎ𝑓 , 𝑔⟩ − ⟨ ̃︀𝒮ℎ𝛾𝑇ℒ ̃︀𝒮ℎ𝑓 , 𝑔⟩ = ⟨(𝒮 − ̃︀𝒮ℎ)𝛾𝑇ℒ ̃︀𝒮ℎ𝑓 , 𝑔⟩.

Using the previous results, it holds that

‖ ̃︀𝒮ℎ𝛾𝑇ℒ(𝒮 − ̃︀𝒮ℎ)‖ = ‖(𝒮 − ̃︀𝒮ℎ)𝛾𝑇ℒ ̃︀𝒮ℎ‖ 6 ‖(𝒮 − ̃︀𝒮ℎ)𝛾𝑇ℒ‖‖ ̃︀𝒮ℎ‖ 6 𝐶ℎ𝑡.

To treat the third term of (3.2), we use the decomposition in Lemma 2.1, along with Lemmas 2.3, 2.8 and 2.4
to obtain

‖ ̃︀𝒮ℎ𝛾𝑇 (ℒ − ℒℎ) ̃︀𝒮ℎ‖ = ‖ ̃︀𝒮ℎ𝛾𝑇 (ℒ − 𝒫ℒℎ) ̃︀𝒮ℎ‖ 6 𝐶‖(ℒ − 𝒫ℒℎ) ̃︀𝒮ℎ‖

6 𝐶‖(ℒ − ℒℎ) ̃︀𝒮ℎ‖+ 𝐶‖(𝐼 − 𝒫)ℒℎ
̃︀𝒮ℎ‖ 6 𝐶ℎ1/2‖ ̃︀𝒮ℎ‖+ 𝐶ℎ1/2+𝑠‖ℒℎ

̃︀𝒮ℎ‖ 6 𝐶ℎ1/2.

Putting all the terms together, we obtain that ‖𝒯 − 𝒯ℎ‖ 6 𝐶ℎmin{1/2,𝑡} → 0. �



294 B. GONG

Consequently, the eigenvalues of ̃︀𝒯ℎ approximate that of 𝒯 with correct multiplicities and there are no spurious
modes. Next we apply the Babuška–Osborn theory [3] to show the convergence order of ̃︀𝜆ℎ. Let 𝜇 be a non-zero
eigenvalue of 𝒯 with multiplicity 𝑚 and ̃︀𝜇ℎ,(𝑗), 𝑗 = 1, . . . ,𝑚, be the eigenvalues of ̃︀𝒯ℎ that approximate 𝜇. Due
to Lemmas 2.11 and 3.1, let the eigenvalues 𝜆 and ̃︀𝜆ℎ,(𝑗) of (2.1) and (3.1), respectively, are such that 𝜆 = −𝜇−1

and ̃︀𝜆ℎ,(𝑗) = −̃︀𝜇−1
ℎ,(𝑗).

Let 𝜌(𝒯 ) ⊂ C be the resolvent set of 𝒯 . For a simple closed curve 𝒞 ⊂ 𝜌(𝒯 ) which encloses only one eigenvalue
𝜇 (with multiplicity 𝑚) of 𝒯 , we define a projection operator 𝐸(𝜇) by

𝐸(𝜇) =
1

2𝜋𝑖

∫︁
𝒞
(𝑧 − 𝒯 )−1 d𝑧.

Let 𝑓1, . . . ,𝑓𝑚 ∈ 𝐸 := 𝐸(𝜇)𝐿2
𝑡 (Γ) be independent eigenvectors of 𝜇 with ‖𝑓 𝑖‖0,Γ = 1 for 𝑖 = 1, . . . ,𝑚. Since 𝒯

is self-adjoint, 𝐸 = span{𝑓1, . . . ,𝑓𝑚}, i.e., the eigenspace associated to 𝜇. Define

̃︀𝜆mean
ℎ =

1
𝑚

𝑚∑︁
𝑗=1

̃︀𝜆ℎ,(𝑗) = − 1
𝑚

𝑚∑︁
𝑗=1

̃︀𝜇−1
ℎ,(𝑗).

Theorem 3.3. For a fixed 𝜆 ̸= 0, |𝜆− ̃︀𝜆mean
ℎ | 6 𝐶ℎ2̃︀𝑟, for any ̃︀𝑟 < min{𝑠Γ, 1/2}.

Proof. The Babuška–Osborn theory ([3], Sect. 7) implies that

|𝜆− ̃︀𝜆mean
ℎ | 6 𝐶

𝑚∑︁
𝑖,𝑗=1

|⟨(𝒯 − ̃︀𝒯ℎ)𝑓 𝑖,𝑓 𝑗⟩|+ 𝐶‖(𝒯 − ̃︀𝒯ℎ)|𝐸‖2.

The bound of the second term is given by Theorem 3.2: ‖(𝒯 − ̃︀𝒯ℎ)|𝐸‖2 6 ‖𝒯 − ̃︀𝒯ℎ‖2 6 𝐶ℎmin{1,2𝑡}, for
𝑡 < min{𝑠Γ, 1}. For the first term, we rewrite it as

⟨(𝒯 − ̃︀𝒯ℎ)𝑓 𝑖,𝑓 𝑗⟩ = ⟨(𝒯 − ̃︀𝒯ℎ)(𝐼 − ̃︀𝒮ℎ)𝑓 𝑖,𝑓 𝑗⟩+ ⟨(𝒯 − ̃︀𝒯ℎ) ̃︀𝒮ℎ𝑓 𝑖, (𝐼 − ̃︀𝒮ℎ)𝑓 𝑗⟩

+ ⟨(𝒯 − ̃︀𝒯ℎ) ̃︀𝒮ℎ𝑓 𝑖, ̃︀𝒮ℎ𝑓 𝑗⟩.

Noting that ̃︀𝒮ℎ𝒮 = ̃︀𝒮ℎ by Lemma 2.10 and 𝑓 𝑖 = −𝜆𝒯 𝑓 𝑖, we follow the same argument as in Theorem 3.2 to
see that ‖(𝐼 − ̃︀𝒮ℎ)𝑓 𝑖‖0,Γ = ‖𝜆(𝒮 − ̃︀𝒮ℎ)𝛾𝑇ℒ𝒮𝑓 𝑖‖ 6 𝐶ℎ𝑡‖𝑓 𝑖‖0,Γ 6 𝐶ℎ𝑡. Here 𝐶 is dependent on 𝜆. Consequently,
by Theorem 3.2, we have that

|⟨(𝒯 − ̃︀𝒯ℎ)(𝐼 − ̃︀𝒮ℎ)𝑓 𝑖,𝑓 𝑗⟩|+ |⟨(𝒯 − ̃︀𝒯ℎ) ̃︀𝒮ℎ𝑓 𝑖, (𝐼 − ̃︀𝒮ℎ)𝑓 𝑗⟩| 6 𝐶ℎmin{1/2+𝑡,2𝑡}.

For the remaining term, we apply Lemma 2.10, the Galerkin orthogonality 𝑎(ℒ𝑓 − ℒℎ𝑓 ,𝑣ℎ) = 0 for all 𝑣ℎ ∈ 𝑉ℎ

and Lemma 2.8 to deduce that

|⟨(𝒯 − ̃︀𝒯ℎ) ̃︀𝒮ℎ𝑓 𝑖, ̃︀𝒮ℎ𝑓 𝑗⟩| = |⟨𝒮𝛾𝑇ℒ ̃︀𝒮ℎ𝑓 𝑖 − ̃︀𝒮ℎ𝛾𝑇ℒℎ
̃︀𝒮ℎ𝑓 𝑖, ̃︀𝒮ℎ𝑓 𝑗⟩| = |⟨𝛾𝑇ℒ ̃︀𝒮ℎ𝑓 𝑖 − 𝛾𝑇ℒℎ

̃︀𝒮ℎ𝑓 𝑖, ̃︀𝒮ℎ𝑓 𝑗⟩|

= |𝑎(ℒ ̃︀𝒮ℎ𝑓 𝑖 − ℒℎ
̃︀𝒮ℎ𝑓 𝑖,ℒ ̃︀𝒮ℎ𝑓 𝑗)| = |𝑎(ℒ ̃︀𝒮ℎ𝑓 𝑖 − ℒℎ

̃︀𝒮ℎ𝑓 𝑖,ℒ ̃︀𝒮ℎ𝑓 𝑗 − ℒℎ
̃︀𝒮ℎ𝑓 𝑗)|

6 𝐶‖ℒ − ℒℎ‖2‖ ̃︀𝒮ℎ‖2 6 𝐶ℎ.

Altogether we obtain |𝜆− ̃︀𝜆mean
ℎ | 6 𝐶ℎmin{1,2𝑡}. As min{min{𝑠Γ, 1}, 1/2} = min{𝑠Γ, 1/2}, the desired estimate

holds for ̃︀𝑟 = min{𝑡, 1/2}. �
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4. Finite element method using 𝒮ℎ

Now consider the finite element eigenvalue problem of finding (𝜆ℎ,𝑢ℎ) ∈ R× 𝑉ℎ such that

𝑎(𝑢ℎ,𝑣ℎ) = −𝜆ℎ⟨𝒮ℎ𝑢ℎ,𝑇 ,𝑣ℎ,𝑇 ⟩, ∀𝑣ℎ ∈ 𝑉ℎ, (4.1)

where 𝒮ℎ is defined in (2.6). We start with the well-posedness of the corresponding source problem: for 𝑓 ∈ 𝐿2
𝑡 (Γ),

find 𝑢ℎ ∈ 𝑉ℎ such that

𝑎(𝑢ℎ,𝑣ℎ) = ⟨𝒮ℎ𝑓 ,𝑣ℎ,𝑇 ⟩, ∀𝑣ℎ ∈ 𝑉ℎ. (4.2)

In other words, to find 𝑢ℎ = ℒℎ𝒮ℎ𝑓 . Formally, we characterize 𝑢ℎ as the solution of the operator equation

(𝐼 +𝒦ℎ)𝑢ℎ = ℒ+
ℎ 𝒮ℎ𝑓 . (4.3)

Using the discrete decomposition 𝑉ℎ = 𝑍ℎ ⊕ ∇(𝑈ℎ/R), we can show the equivalence between (4.2) and (4.3)
(see e.g., [15], Lem. 3.1).

Lemma 4.1. 𝑢ℎ ∈ 𝑉ℎ is a solution of (4.2) if and only if 𝑢ℎ ∈ 𝐿2(Ω) is a solution of (4.3).

In what follows, we deal with the existence and (uniform) continuous dependence on 𝑓 ∈ 𝐿2
𝑡 (Γ) of 𝑢ℎ. In

(4.3), the uniform boundedness of (𝐼+𝒦ℎ)−1 from 𝐿2(Ω) to 𝐿2(Ω) is guaranteed by the collective compactness
of {𝒦ℎ}ℎ. Consequently, the operator (𝐼+𝒦ℎ)−1 = 𝐼−𝒦ℎ(𝐼+𝒦ℎ)−1 confined on 𝑉ℎ is also uniformly bounded
from 𝑉ℎ to 𝑉ℎ. Hence it requires the uniform boundedness of ℒ+

ℎ 𝒮ℎ on 𝐿2
𝑡 (Γ) to show the well-posedness of

𝑢ℎ. However, what’s in hand now is only the well-posedness of ℒ+
ℎ on 𝐻

(︀
div0

Γ; Γ
)︀
, while the range of 𝒮ℎ is not

contained in 𝐻
(︀
div0

Γ; Γ
)︀
. Noticing in the equation of ℒ+

ℎ 𝒮ℎ,

𝑎+

(︀
ℒ+

ℎ 𝒮ℎ𝑓 ,𝑣ℎ

)︀
= ⟨𝒮ℎ𝑓 ,𝑣ℎ,𝑇 ⟩, ∀𝑣ℎ ∈ 𝑉ℎ,

the sesquilinear 𝑎+(·, ·) is coercive, hence what remains is to show the uniform boundedness of the right-hand-
side ⟨𝒮ℎ𝑓 ,𝑣ℎ,𝑇 ⟩ for 𝑣ℎ ∈ 𝑉ℎ.

Lemma 4.2. ℒ+
ℎ 𝒮ℎ and ℒℎ𝒮ℎ are well-defined and uniformly bounded on 𝐿2

𝑡 (Γ).

Proof. Note that

|⟨𝒮ℎ𝑓 ,𝑣ℎ,𝑇 ⟩| = |⟨𝑓 ,𝒮ℎ𝑣ℎ,𝑇 ⟩| 6 ‖𝑓‖0,Γ‖𝒮ℎ𝑣ℎ,𝑇 ‖0,Γ.

Decompose 𝑣ℎ into 𝑣ℎ = 𝑧ℎ +∇𝑝ℎ according to 𝑉ℎ = 𝑍ℎ ⊕∇(𝑈ℎ/R) and 𝑧ℎ into 𝑧ℎ = 𝑧ℎ,0 +∇𝑝ℎ according
to 𝐻(curl; Ω) = 𝑍 ⊕∇(𝐻1(Ω)/R). It is easily seen that 𝛾𝑇∇𝑝ℎ = 𝑧ℎ,𝑇 − 𝑧ℎ,0,𝑇 ∈ 𝐿2

𝑡 (Γ). We have

‖𝒮ℎ𝑣ℎ,𝑇 ‖0,Γ = ‖𝒮ℎ𝑧ℎ,𝑇 ‖0,Γ 6 ‖𝒮ℎ𝑧ℎ,0,𝑇 ‖0,Γ +
⃦⃦
𝒮ℎ𝛾𝑇∇𝑝ℎ

⃦⃦
0,Γ
.

On one hand, by Lemma 2.3, we have that

‖𝒮ℎ𝑧ℎ,0,𝑇 ‖0,Γ 6 ‖𝑧ℎ,0,𝑇 ‖0,Γ 6 𝐶‖𝑧ℎ,0‖curl,Ω 6 𝐶‖𝑧ℎ‖curl,Ω 6 𝐶‖𝑣ℎ‖curl,Ω.

On the other hand, using the identity
(︀
𝐼 − 𝜋1

ℎ

)︀
∇𝑝ℎ +

(︀
𝐼 − 𝜋1

ℎ

)︀
𝑧ℎ,0 =

(︀
𝐼 − 𝜋1

ℎ

)︀
𝑧ℎ = 0, 𝜋1

ℎ∇𝑝ℎ is well-defined,
and it holds ⃦⃦

𝒮ℎ𝛾𝑇∇𝑝ℎ
⃦⃦

0,Γ
6

⃦⃦
𝒮ℎ𝛾𝑇𝜋

1
ℎ∇𝑝ℎ

⃦⃦
0,Γ

+
⃦⃦
𝒮ℎ𝛾𝑇

(︀
𝐼 − 𝜋1

ℎ

)︀
𝑧ℎ,0

⃦⃦
0,Γ
.

Since curl𝜋1
ℎ∇𝑝ℎ = 𝜋2

ℎcurl∇𝑝ℎ = 0 and 𝜋1
ℎ∇𝑝ℎ ∈ 𝑉ℎ, there exists 𝜑ℎ ∈ 𝑈ℎ such that 𝜋1

ℎ∇𝑝ℎ = ∇𝑞ℎ, which
implies there is 𝑞ℎ = 𝜑ℎ|Γ ∈ 𝑈Γ

ℎ and 𝒮ℎ𝛾𝑇𝜋
1
ℎ∇𝑝ℎ = 𝒮ℎ∇Γ𝑞ℎ = 0. In addition, we have that⃦⃦

𝒮ℎ𝛾𝑇

(︀
𝐼 − 𝜋1

ℎ

)︀
𝑧ℎ,0

⃦⃦2

0,Γ
6

⃦⃦
𝛾𝑇

(︀
𝐼 − 𝜋1

ℎ

)︀
𝑧ℎ,0

⃦⃦2

0,Γ
6

⃦⃦(︀
𝐼 − 𝜋1

ℎ

)︀
𝑧ℎ,0

⃦⃦2

0,Γ
=

∑︁
𝐹∈𝜏ℎ(Γ)

⃦⃦(︀
𝐼 − 𝜋1

ℎ

)︀
𝑧ℎ,0

⃦⃦2

0,𝐹
,
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where 𝐹 is a face of an element on the boundary. Let 𝐾 be the element containing 𝐹 . Noting that 𝑧ℎ,0 ∈
𝐻1/2+𝑠(Ω) and curl 𝑧ℎ,0 ∈𝑊ℎ, we map

(︀
𝐼 − 𝜋1

ℎ

)︀
𝑧ℎ,0 from the element 𝐾 to the reference element 𝐾̂ then map

back to see that⃦⃦(︀
𝐼 − 𝜋1

ℎ

)︀
𝑧ℎ,0

⃦⃦2

0,𝐹
6 𝐶ℎ𝑠

(︁
‖𝑧ℎ,0‖1/2+𝑠,𝐾 + ‖curl 𝑧ℎ,0‖0,𝐾

)︁
6 𝐶ℎ𝑠‖𝑧ℎ,0‖curl,𝐾 6 𝐶ℎ

𝑠‖𝑣ℎ‖curl,𝐾 .

Altogether we obtain that⃦⃦
𝒮ℎ𝛾𝑇∇𝑝ℎ

⃦⃦
0,Γ
6 𝐶ℎ𝑠‖𝑣ℎ‖curl,Ω, (4.4)

‖𝒮ℎ𝑣ℎ,𝑇 ‖0,Γ 6 𝐶‖𝑣ℎ‖curl,Ω, and |⟨𝒮ℎ𝑓 ,𝑣ℎ,𝑇 ⟩| 6 𝐶‖𝑓‖0,Γ‖𝑣ℎ‖curl,Ω.

Using the coercivity and boundedness of 𝑎+(·, ·), we obtain the well-posedness of ℒ+
ℎ 𝒮ℎ on 𝐿2

𝑡 (Γ) with
⃦⃦
ℒ+

ℎ 𝒮ℎ

⃦⃦
6

𝐶. Due to Lemmas 4.1 and 2.7, (4.3) and (4.2) are well-posed. Moreover,

ℒℎ𝒮ℎ = (𝐼 +𝒦ℎ)−1ℒ+
ℎ 𝒮ℎ,

and ‖ℒℎ𝒮ℎ‖ 6 𝐶. The proof is complete. �

We now can define the solution operator 𝒯ℎ : 𝐿2
𝑡 (Γ) → 𝐿2

𝑡 (Γ) for (4.1) by

𝒯ℎ = 𝒮ℎ𝛾𝑇ℒℎ𝒮ℎ.

Lemma 4.3. 𝒯ℎ are uniformly bounded and self-adjoint. There is a bijection between the eigenpairs of (4.1)
and those of 𝒯ℎ for nonzero eigenvalues.

Proof. Due to Lemma 4.2, 𝒯ℎ are uniformly bounded with

‖𝒯ℎ‖ 6 ‖𝒮ℎ𝛾𝑇𝒫ℒℎ𝒮ℎ‖+ ‖𝒮ℎ𝛾𝑇 (𝐼 − 𝒫)ℒℎ𝒮ℎ‖ 6 𝐶 + 𝐶ℎ𝑠 6 𝐶.

The self-adjoint property and the correspondence between the eigenpairs of 𝒯ℎ and (4.1) can be shown the same
way as in Lemma 2.11. �

The proof of 𝒯ℎ converging to 𝒯 and 𝜆ℎ converging to 𝜆 follows similar steps in that of Theorems 3.2 and 3.3,
respectively. However, there are several technical differences.

Theorem 4.4. ‖𝒯 − 𝒯ℎ‖ → 0.

Proof. Note that

𝒯 − 𝒯ℎ = (𝒮 − 𝒮ℎ)𝛾𝑇ℒ𝒮 + 𝒮ℎ𝛾𝑇 (ℒ − ℒℎ)𝒮 + 𝒮ℎ𝛾𝑇ℒℎ(𝒮 − 𝒮ℎ). (4.5)

Given 𝑓 ∈ 𝐿2
𝑡 (Γ), by definition, (𝒮 − 𝒮ℎ)𝛾𝑇ℒ𝒮𝑓 = ∇Γ𝑝−∇Γ𝑝ℎ with 𝑝 and 𝑝ℎ being, respectively, the solution

of (2.3) and (2.6) with 𝜇 = 𝛾𝑇ℒ𝒮𝑓 . By Lemma 2.3 and the proof of Lemma 2.11, we have that ∇Γ𝑝 =
(𝒮 − 𝐼)𝛾𝑇ℒ𝒮𝑓 ∈ 𝐻𝑟

−(Γ) for 𝑟 < min{min{𝑠Ω, 1/2},min{𝑠Γ, 1}} = min{𝑠Ω, 𝑠Γ} with

‖∇Γ𝑝‖𝑟,−,Γ 6 ‖𝛾𝑇ℒ𝒮𝑓‖𝑟,−,Γ + ‖𝒮𝛾𝑇ℒ𝒮𝑓‖𝑟,−,Γ

6 𝐶‖ℒ𝒮𝑓‖1/2+𝑟,Ω + 𝐶‖curlΓ𝛾𝑇ℒ𝒮𝑓‖0,Γ 6 𝐶‖𝑓‖0,Γ.

Due to (17) of [8], it holds that

‖∇Γ𝑝−∇Γ𝑝ℎ‖0,Γ 6 𝐶ℎ
𝑟‖𝑝‖𝐻1+𝑟(Γ)/R 6 𝐶ℎ

𝑟‖∇Γ𝑝‖𝑟,−,Γ 6 𝐶ℎ
𝑟‖𝑓‖0,Γ,
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which implies that ‖(𝒮 − 𝒮ℎ)𝛾𝑇ℒ𝒮‖ 6 𝐶ℎ𝑟.
For the third term of (4.5), we consider its adjoint (𝒮 −𝒮ℎ)𝛾𝑇ℒℎ𝒮ℎ =

(︀
𝒮ℎ𝛾𝑇ℒℎ(𝒮 −𝒮ℎ)

)︀*. Given 𝑓 ∈ 𝐿2
𝑡 (Γ),

we write

(𝒮 − 𝒮ℎ)𝛾𝑇ℒℎ𝒮ℎ𝑓 = (𝒮 − 𝒮ℎ)𝛾𝑇𝒫ℒℎ𝒮ℎ𝑓 + (𝒮 − 𝒮ℎ)𝛾𝑇 (𝐼 − 𝒫)ℒℎ𝒮ℎ𝑓 .

By definition, (𝒮 − 𝒮ℎ)𝛾𝑇𝒫ℒℎ𝒮ℎ𝑓 = ∇Γ𝜑 − ∇Γ𝜑ℎ, where 𝜑 and 𝜑ℎ are the solutions of (2.3) and (2.6)
with 𝜇 = 𝛾𝑇𝒫ℒℎ𝒮ℎ𝑓 , respectively. Similarly, we have ∇Γ𝜑 = (𝒮 − 𝐼)𝛾𝑇𝒫ℒℎ𝒮ℎ𝑓 ∈ 𝐻𝑟

−(Γ) for 𝑟 <
min{min{𝑠Ω, 1/2},min{𝑠Γ, 1/2}} = min{𝑠Ω, 𝑠Γ} (here 𝑟 is assigned with the same value as in the above para-
graph) with

‖∇Γ𝜑‖𝑟,−,Γ 6 ‖𝛾𝑇𝒫ℒℎ𝒮𝑓‖𝑟,−,Γ + ‖𝒮𝛾𝑇𝒫ℒℎ𝒮𝑓‖𝑟,−,Γ

6 𝐶‖𝒫ℒℎ𝒮ℎ𝑓‖1/2+𝑟,Ω + 𝐶‖curlΓ𝛾𝑇𝒫ℒℎ𝒮ℎ𝑓‖−1/2,Γ

6 𝐶‖𝒫ℒℎ𝒮ℎ𝑓‖curl,Ω + 𝐶‖𝒫ℒℎ𝒮ℎ𝑓‖curl,Ω 6 𝐶‖𝑓‖0,Γ.

Therefore,

‖∇Γ𝜑−∇Γ𝜑ℎ‖0,Γ 6 𝐶ℎ
𝑟‖𝜑‖𝐻1+𝑟(Γ)/R 6 𝐶ℎ

𝑟‖∇Γ𝜑‖𝑟,−,Γ 6 𝐶ℎ
𝑟‖𝑓‖0,Γ.

Meanwhile, using (4.4), we have for 𝑠 ∈ (𝑟, 𝑠Ω) that

‖(𝒮 − 𝒮ℎ)𝛾𝑇 (𝐼 − 𝒫)ℒℎ𝒮ℎ𝑓‖0,Γ = ‖𝒮ℎ𝛾𝑇 (𝐼 − 𝒫)ℒℎ𝒮ℎ𝑓‖0,Γ 6 𝐶ℎ
𝑠‖ℒℎ𝒮ℎ𝑓‖curl,Ω 6 𝐶ℎ

𝑠‖𝑓‖0,Γ.

Therefore, ‖𝒮ℎ𝛾𝑇ℒℎ(𝒮 − 𝒮ℎ)‖ = ‖(𝒮 − 𝒮ℎ)𝛾𝑇ℒℎ𝒮ℎ‖ 6 𝐶ℎ𝑟.
Similar to the proof of Theorem 3.2, we insert a 𝒫 into the second term of (4.5) to obtain that

‖𝒮ℎ𝛾𝑇 (ℒ − ℒℎ)𝒮‖ 6 ‖𝒮ℎ𝛾𝑇 (ℒ − 𝒫ℒℎ)𝒮‖+ ‖𝒮ℎ𝛾𝑇 (𝒫 − 𝐼)ℒℎ𝒮‖ 6 𝐶ℎ1/2 + 𝐶ℎ𝑠 6 𝐶ℎ𝑠,

where we have used again (4.4). Altogether, we obtain ‖𝒯 − 𝒯ℎ‖ 6 𝐶ℎ𝑟 → 0. �

Now we show the convergence order of 𝜆ℎ. Let 𝜇 be a nonzero eigenvalue of 𝒯 with multiplicity 𝑚 and
𝜇ℎ,(𝑗), 𝑗 = 1, . . . ,𝑚, be the eigenvalues of 𝒯ℎ that approximate 𝜇. Let 𝜆 and 𝜆ℎ,(𝑗) be, respectively, the related
eigenvalues of (2.1) and (4.1) with 𝜆 = −𝜇−1 and 𝜆ℎ,(𝑗) = −𝜇−1

ℎ,(𝑗). Define

𝜆mean
ℎ =

1
𝑚

𝑚∑︁
𝑗=1

𝜆ℎ,(𝑗) = − 1
𝑚

𝑚∑︁
𝑗=1

𝜇−1
ℎ,(𝑗).

Theorem 4.5. For a fixed 𝜆 ̸= 0, |𝜆− 𝜆mean
ℎ | 6 𝐶ℎ2𝑟, for any 𝑟 < min{𝑠Ω, 𝑠Γ}.

Proof. By the Babuška–Osborn theory,

|𝜆− 𝜆mean
ℎ | 6 𝐶

𝑚∑︁
𝑖,𝑗=1

⃒⃒⟨︀
(𝒯 − 𝒯ℎ)𝑓 𝑖,𝑓 𝑗

⟩︀⃒⃒
+ 𝐶‖(𝒯 − 𝒯ℎ)|𝐸‖2. (4.6)

It holds that ⟨︀
(𝒯 − 𝒯ℎ)𝑓 𝑖,𝑓 𝑗

⟩︀
=

⟨︀
𝒮𝛾𝑇ℒ𝒮𝑓 𝑖,𝑓 𝑗

⟩︀
−

⟨︀
𝒮ℎ𝛾𝑇ℒℎ𝒮ℎ𝑓 𝑖,𝑓 𝑗

⟩︀
=

⟨︀
𝛾𝑇ℒ𝒮𝑓 𝑖,𝒮𝑓 𝑗

⟩︀
−

⟨︀
𝛾𝑇ℒℎ𝒮ℎ𝑓 𝑖,𝒮ℎ𝑓 𝑗

⟩︀
=

⟨︀
𝛾𝑇 (ℒ − ℒℎ)𝑓 𝑖,𝑓 𝑗

⟩︀
= 𝑎((ℒ − ℒℎ)𝑓 𝑖,ℒ𝑓 𝑗) = 𝑎((ℒ − ℒℎ)𝑓 𝑖, (ℒ − ℒℎ)𝑓 𝑗),

where we have used Lemma 2.10, 𝑓 𝑖 = −𝜆𝒯 𝑓 𝑖, and the Galerkin orthogonality. By Lemma 2.8,⃒⃒⟨︀
(𝒯 − 𝒯ℎ)𝑓 𝑖,𝑓 𝑗

⟩︀⃒⃒
6 𝐶ℎ. Using Theorem 4.4, we have that ‖(𝒯 − 𝒯ℎ)|𝐸‖ 6 ‖𝒯 − 𝒯ℎ‖ 6 𝐶ℎ𝑟. Therefore,

we conclude from (4.6) that |𝜆− 𝜆mean
ℎ | 6 𝐶ℎ2𝑟. �

Comparing the results of Theorems 3.3 and 4.5 we see that the convergence order we obtain for 𝜆ℎ is not
greater than that of ̃︀𝜆ℎ.



298 B. GONG

5. Additional approximation properties

In this section we assume the parameters 𝜅 and 𝜖𝑟 are such that 𝑎(·, ·) is positive definite on 𝐻(curl; Ω) ×
𝐻(curl; Ω). Define an operator T : 𝐻(curl; Ω) → 𝐻(curl; Ω) by

T = ℒ𝒮𝛾𝑇 .

It can be easily shown that there’s a bijection between the eigenpairs of T and those of (2.1) for nonzero eigenval-
ues. The operator T is also compact since the range of T is contained in 𝐻1/2(curl; Ω) = {𝑢 ∈ 𝐻1/2(Ω) | curl𝑢 ∈
𝐻1/2(Ω)} (see e.g., [15], Lem. 2.7), which is compactly embedded in 𝐻(curl; Ω). Moreover, T is self-adjoint
with respect to the inner product induced by 𝑎(·, ·), as

𝑎(T𝑢,𝑣) = ⟨𝒮𝑢𝑇 ,𝑣𝑇 ⟩ = ⟨𝑢𝑇 ,𝒮𝑣𝑇 ⟩ = 𝑎(𝑢,T𝑣),

for 𝑢,𝑣 ∈ 𝐻(curl; Ω). Consider an auxiliary eigenvalue problem of finding
(︀
𝜆0

ℎ,𝑢ℎ

)︀
∈ R× 𝑉ℎ such that

𝑎(𝑢ℎ,𝑣ℎ) = −𝜆0
ℎ⟨𝒮𝑢ℎ,𝑇 ,𝑣ℎ,𝑇 ⟩, ∀𝑣ℎ ∈ 𝑉ℎ. (5.1)

Then for (3.1), (4.1) and (5.1) we define the corresponding solution operators as ̃︀Tℎ : 𝑉ℎ → 𝑉ℎ, Tℎ : 𝑉ℎ → 𝑉ℎ

and T0
ℎ : 𝑉ℎ → 𝑉ℎ respectively, such that

̃︀Tℎ = ℒℎ
̃︀𝒮ℎ𝛾𝑇 , Tℎ = ℒℎ𝒮ℎ𝛾𝑇 , T0

ℎ = ℒℎ𝒮𝛾𝑇 .

Similarly, we can show that ̃︀Tℎ,Tℎ and T0
ℎ are bounded, self-adjoint with respect to the inner product induced

by 𝑎(·, ·), and there are respectively bijections between eigenpairs of these operators and those of (3.1), (4.1)
and (5.1).

Let 𝜆𝑗 , 𝜆ℎ,𝑗 , ̃︀𝜆ℎ,𝑗 and 𝜆0
ℎ,𝑗 be the 𝑗-th eigenvalues in descending order of (2.1), (4.1), (3.1) and (5.1), respec-

tively. Namely, 𝜆𝑗 > 𝜆𝑗+1, 𝜆ℎ,𝑗 > 𝜆ℎ,𝑗+1, ̃︀𝜆ℎ,𝑗 > ̃︀𝜆ℎ,𝑗+1 and 𝜆0
ℎ,𝑗 > 𝜆0

ℎ,𝑗+1 for 𝑗 = 1, 2, . . . . Under the setting
of this section 𝜆𝑗 , 𝜆ℎ,𝑗 , ̃︀𝜆ℎ,𝑗 and 𝜆0

ℎ,𝑗 are negative. Let 𝜇𝑗 , 𝜇ℎ,𝑗 , ̃︀𝜇ℎ,𝑗 and 𝜇0
ℎ,𝑗 be the eigenvalues of T,Tℎ, ̃︀Tℎ

and T0
ℎ corresponding to 𝜆𝑗 , 𝜆ℎ,𝑗 , ̃︀𝜆ℎ,𝑗 and 𝜆0

ℎ,𝑗 , respectively, i.e., 𝜆𝑗 = −𝜇−1
𝑗 , 𝜆ℎ,𝑗 = −𝜇−1

ℎ,𝑗 , ̃︀𝜆ℎ,𝑗 = −̃︀𝜇−1
ℎ,𝑗 and

𝜆0
ℎ,𝑗 = −(𝜇0

ℎ,𝑗)−1. Denote by 𝑉 (𝑗) the set of all subspaces of 𝐻(curl; Ω) with dimension 𝑗, and by 𝑉 (𝑗)
ℎ the set

of all subspaces of 𝑉ℎ with dimension 𝑗. Then, for 𝜆𝑗 we have the min-max property

𝜆𝑗 = −𝜇−1
𝑗 = −

(︂
max

𝐸∈𝑉 (𝑗)
min
𝑢∈𝐸

𝑎(T𝑢,𝑢)/𝑎(𝑢,𝑢)
)︂−1

= − min
𝐸∈𝑉 (𝑗)

max
𝑢∈𝐸

𝑎(𝑢,𝑢)/⟨𝒮𝑢𝑇 ,𝑢𝑇 ⟩.

Similarly, the min-max property holds for 𝜆ℎ,𝑗 , ̃︀𝜆ℎ,𝑗 and 𝜆0
ℎ,𝑗 ,

𝜆ℎ,𝑗 = − min
𝐸ℎ∈𝑉

(𝑗)
ℎ

max
𝑢ℎ∈𝐸ℎ

𝑎(𝑢ℎ,𝑢ℎ)/⟨𝒮ℎ𝑢ℎ,𝑇 ,𝑢ℎ,𝑇 ⟩,

̃︀𝜆ℎ,𝑗 = − min
𝐸ℎ∈𝑉

(𝑗)
ℎ

max
𝑢ℎ∈𝐸ℎ

𝑎(𝑢ℎ,𝑢ℎ)/⟨ ̃︀𝒮ℎ𝑢ℎ,𝑇 ,𝑢ℎ,𝑇 ⟩,

𝜆0
ℎ,𝑗 = − min

𝐸ℎ∈𝑉
(𝑗)

ℎ

max
𝑢ℎ∈𝐸ℎ

𝑎(𝑢ℎ,𝑢ℎ)/⟨𝒮𝑢ℎ,𝑇 ,𝑢ℎ,𝑇 ⟩.

If there is no ambiguity we shall omit the subscript ·𝑗 , and use 𝜆, 𝜆ℎ, ̃︀𝜆ℎ, 𝜆
0
ℎ to represent 𝜆𝑗 , 𝜆ℎ,𝑗 , ̃︀𝜆ℎ,𝑗 , 𝜆0

ℎ,𝑗 with
the same fixed 𝑗.
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Lemma 5.1. 𝜆ℎ > 𝜆0
ℎ > ̃︀𝜆ℎ.

Proof. Given 𝑓 ∈ 𝐿2
𝑡 (Γ), by Lemma 2.10, we have that

⟨𝒮ℎ𝑓 ,𝑓⟩ − ⟨𝒮𝑓 ,𝑓⟩ = ⟨𝒮ℎ𝑓 ,𝑓⟩ − ⟨𝒮𝑓 ,𝑓⟩ − ⟨𝑓 ,𝒮𝑓⟩+ ⟨𝒮𝑓 ,𝒮𝑓⟩
= ⟨𝒮ℎ𝑓 ,𝒮ℎ𝑓⟩ − ⟨𝒮𝑓 ,𝒮ℎ𝑓⟩ − ⟨𝒮ℎ𝑓 ,𝒮𝑓⟩+ ⟨𝒮𝑓 ,𝒮𝑓⟩
= ‖(𝒮ℎ − 𝒮)𝑓‖20,Γ > 0.

Similarly,

⟨𝒮𝑓 ,𝑓⟩ − ⟨ ̃︀𝒮ℎ𝑓 ,𝑓⟩ = ⟨𝒮𝑓 ,𝑓⟩ − ⟨ ̃︀𝒮ℎ𝑓 ,𝑓⟩ − ⟨𝑓 , ̃︀𝒮ℎ𝑓⟩+ ⟨ ̃︀𝒮ℎ𝑓 , ̃︀𝒮ℎ𝑓⟩

= ⟨𝒮𝑓 ,𝒮𝑓⟩ − ⟨ ̃︀𝒮ℎ𝑓 ,𝒮𝑓⟩ − ⟨𝒮𝑓 , ̃︀𝒮ℎ𝑓⟩+ ⟨ ̃︀𝒮ℎ𝑓 , ̃︀𝒮ℎ𝑓⟩

= ‖(𝒮 − ̃︀𝒮ℎ)𝑓‖20,Γ > 0.

Then the min-max property implies that 𝜆ℎ > 𝜆0
ℎ > ̃︀𝜆ℎ. �

Since 𝑉ℎ is a subset of 𝐻(curl; Ω), one has 𝜆 > 𝜆0
ℎ. As a consequence, ̃︀𝜆ℎ converges to 𝜆 from below, as

concluded in the following proposition.

Proposition 5.2. 𝜆 > ̃︀𝜆ℎ.

Next we consider a refinement 𝜏ℎ𝑖+1 of the mesh 𝜏ℎ𝑖 . Thus the finite element spaces for 𝜏ℎ𝑖 and 𝜏ℎ𝑖+1 satisfy
𝑉ℎ𝑖 ⊂ 𝑉ℎ𝑖+1 and 𝑈Γ

ℎ𝑖
⊂ 𝑈Γ

ℎ𝑖+1
. Define an eigenvalue problem of finding (̃︀𝜆ℎ𝑖+1

ℎ𝑖
,𝑢ℎ𝑖) ∈ R× 𝑉ℎ𝑖 such that

𝑎(𝑢ℎ𝑖 ,𝑣ℎ𝑖) = −̃︀𝜆ℎ𝑖+1
ℎ𝑖

⟨ ̃︀𝒮ℎ𝑖+1𝑢ℎ𝑖,𝑇 ,𝑣ℎ𝑖,𝑇 ⟩, ∀𝑣ℎ𝑖 ∈ 𝑉ℎ𝑖 .

Then the 𝑗-th eigenvalue ̃︀𝜆ℎ𝑖+1
ℎ𝑖,𝑗

is given by

̃︀𝜆ℎ𝑖+1
ℎ𝑖,𝑗

= − min
𝐸ℎ𝑖

∈𝑉
(𝑗)

ℎ𝑖

max
𝑢ℎ𝑖

∈𝐸ℎ𝑖

𝑎(𝑢ℎ𝑖
,𝑢ℎ𝑖

)/⟨ ̃︀𝒮ℎ𝑖+1𝑢ℎ𝑖,𝑇 ,𝑢ℎ𝑖,𝑇 ⟩.

Given 𝑓 ∈ 𝐿2
𝑡 (Γ), there exists 𝑞ℎ𝑖

∈ 𝑈Γ
ℎ𝑖
⊂ 𝑈Γ

ℎ𝑖+1
such that ̃︀𝒮ℎ𝑖

𝑓 = curlΓ𝑞ℎ𝑖
. Hence

⟨ ̃︀𝒮ℎ𝑖+1𝑓 ,
̃︀𝒮ℎ𝑖𝑓⟩ = ⟨𝑓 , ̃︀𝒮ℎ𝑖𝑓⟩.

Consequently, the same argument as in Lemma 5.1 yields ⟨ ̃︀𝒮ℎ𝑖+1𝑓 ,𝑓⟩ > ⟨ ̃︀𝒮ℎ𝑖
𝑓 ,𝑓⟩, which, by the min-max

property, implies that ̃︀𝜆ℎ𝑖+1
ℎ𝑖
> ̃︀𝜆ℎ𝑖

. Using again the min-max property and the inclusion 𝑉ℎ𝑖
⊂ 𝑉ℎ𝑖+1 , we obtaiñ︀𝜆ℎ𝑖+1 > ̃︀𝜆ℎ𝑖+1

ℎ𝑖
. Hence the following monotonicity of ̃︀𝜆ℎ holds.

Proposition 5.3. For meshes 𝜏ℎ𝑖
and 𝜏ℎ𝑖+1 with 𝜏ℎ𝑖+1 a refinement of 𝜏ℎ𝑖

, ̃︀𝜆ℎ𝑖+1 > ̃︀𝜆ℎ𝑖
.

6. Conclusion

In this work, we propose new definitions of the solution operator 𝒯 and two finite element approximations̃︀𝒯ℎ and 𝒯ℎ for the modified Maxwell’s Steklov eigenvalue problem. With the help of these operators, we are able
to prove the convergence order of eigenvalues for both finite element methods. Moreover, the ordering between
the eigenvalues 𝜆ℎ and ̃︀𝜆ℎ, and the monotonic converging property of ̃︀𝜆ℎ are proved. Besides, it is observed in
numerical results of [15] that 𝜆ℎ has the same monotonic converging property as ̃︀𝜆ℎ. This property of 𝜆ℎ is
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interesting to investigate, since, if 𝜆ℎ truly converge from below, we can claim using Lemma 5.1 that the finite
element method (4.1) is a better choice than (3.1).

Acknowledgements. The research was partially supported by China Postdoctoral Science Foundation Grant
2019M650460.

References

[1] A.B. Andreev and T.D. Todorov, Isoparametric finite-element approximation of a Steklov eigenvalue problem. IMA J. Numer.
Anal. 24 (2004) 309–322.

[2] D.N. Arnold, R.S. Falk and R. Winther, Multigrid in H(div) and H(curl). Numer. Math. 85 (2000) 197–217.
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