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CONVERGENCE ANALYSIS OF TWO FINITE ELEMENT METHODS FOR THE
MODIFIED MAXWELL’S STEKLOV EIGENVALUE PROBLEM

Bo Gong*

Abstract. The modified Maxwell’s Steklov eigenvalue problem is a new problem arising from the
study of inverse electromagnetic scattering problems. In this paper, we investigate two finite element
methods for this problem and perform the convergence analysis. Moreover, the monotonic convergence
of the discrete eigenvalues computed by one of the methods is analyzed.
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1. INTRODUCTION

The Steklov eigenvalue problem is governed by the elliptic equation with the eigen-parameter in the bound-
ary condition. It has many applications in physics, e.g., surface waves [4] and stability of mechanical oscillators
immersed in a viscous fluid [13]. Various numerical methods for the Steklov eigenvalue problem have been
developed and analyzed [1,6,19,22,24,26]. Recently, a new application was considered in [10] using the Steklov
eigenvalues as a target signature in nondestructive testing (see e.g., [12,17] for different choices of target sig-
natures). The associated non-selfadjoint Steklov eigenvalue problem for inhomogeneous absorbing media has
drawn significant attention in the numerical analysis community [20, 25, 27].

Most earlier papers on Steklov eigenvalues focused on the Laplace or the Helmholtz equation. For the
Maxwell’s equation, the so-called modified Steklov eigenvalues was studied in [11] for an electromagnetic inverse
scattering problem. In the same paper a finite element method was proposed for computing the eigenvalues.
The term “modified” refers to the insertion of a boundary-to-boundary operator S into the standard Steklov
eigenvalue problem. Through this modification the authors showed the compactness of the corresponding solu-
tion operator and the existence of the eigenvalues. For numerical analysis about this eigenvalue problem, to
our knowledge, there exist only two papers [15,16]. Halla [16] provided a general framework considering the
original and the modified Maxwell’s Steklov eigenvalue problem, which guaranteed that the Galerkin approx-
imation is convergent as long as certain commuting projection operator exists. While in [15], a specific finite
element method was considered and a convergence order of the corresponding discrete eigenvalues were obtained.
However, neither of these two results cover the method proposed in [11].

The difference between the two finite element methods, the one used in [11] and the one considered in [15],
is how § is discretized. The boundary-to-boundary operator S projects vectors into the surface-divergence-free
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space. It has two equivalent representations on the continuous level, but the corresponding finite element dis-
cretizations differ substantially. We denote by Sj, the discretization used in [11], and by S, the one in [15]. What
is crucial of gh is that it maintains the property of & to map vectors into the surface-divergence-free space.
In contrast, S, does not, i.e., it has a range not surface-divergence-free. Despite of this difference between Sy,
and Sy, they display similar numerical behaviour (see [15]). Both the eigenvalues A; and A; computed by the
method using S;, and gh respectively, converge to the exact values. Moreover, A\, seems to be more accurate
than A\j;. This motivates us to analyze the finite element method that uses Sp, which is the main goal of the
current paper.

As mentioned above, the major difficulty in the analysis lies in the fact that the range of S, is not surface-
divergence-free. To this end, we define a solution operator slightly different than that from [11] so that its domain
and range are the L? space other than the surface-divergence-free space. Both finite element methods (with g’h
and Sy) under this L2-to-L? framework are analyzed. The main tools used here are the Helmholtz decomposition
and the Babuska—Osborn theory for eigenvalue problems [3] (see [5,23] for some recent developments). In

addition, we prove under some conditions the monotonic convergence of A, and an inequality between \;, and
An-

The rest of the paper is arranged as follows. In Section 2, we introduce the notations and present some useful
estimations and identities. Sections 3 and 4 contain the error analysis for the finite element methods using Sy,
and Sy, respectively. Convergence in norm of the discrete solution operators and the convergence order of the
associated eigenvalues are obtained. In Section 5, we prove some other properties for the discrete eigenvalues.

2. PRELIMINARY

Let Q C R? be a simply connected bounded Lipschitz polyhedron with a connected boundary I'. Let v be the
unit outward normal to I'. Denote by H*(Q) and H*(T') the standard Sobolev spaces for s € R and t € [—1,1],
respectively. Define

3

H*(Q) = (H*(Q))*, L*(Q) := (LQ(Q))s, L*(I) := (L*(I))",
H(curl;Q) = {u € L*(Q) | curlu € L*(Q)},
H(div;Q) := {u € L*(Q) |divu € L*(Q)},
Hy(div; Q) :={u e H(div; Q) |[v-u=0 ae.onT},
L{(T):={pec L*T)|v-p=0 aeconl}
We denote the norm of H*(Q), L?(T') and HYT) as || - |s.q, || - [lo.r and || - ||, respectively. The norm of
H(curl; Q) is || - leurte with [[u]2y.q = lul?q + |curlulf) .

Denote by I';, j = 1,...,J, the boundary faces of Q. For v € L*(T"), let ¢; = Y|r,. The spaces H'(T) and
H' (T') for t > 0 are defined as [8]

H'I) = {y € H'()|¢; € HY(T;)} and H'(T)={¢ € L}(I')|¢; € H'(I;)*},

with [|9][7, r = (¥
Let

J 2 J 2
%,1‘ + Zj:1||7/}jH1+t,rj and ||¢||t2,—,1“ = Zj=1||¢j||Ht(Fj)2'

v (C2(@) - LAT) and 7 : (C(Q)) — LX)

be the trace operators that maps v to v x v|r and (v x v|r) X v, respectively. The operators v; and yr can
be continuously extended to H (curl; 2). Denote by vy = yrv the tangential component of v on the boundary.
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Let Vr and curlp denote, respectively, the surface gradient and surface vector curl, which can be defined on
H/2 (T"). The surface divergence and surface scalar curl, denoted by divr and curlp, are respectively the duals
of —Vr and curly, i.e.,

<¢> VF¢> = _<diVF¢7 d])? <¢7 curlﬂ/}) = <CUI'1F¢), 1/}>

Define the surface-divergence-free space as
H(div};T) == {p € L}(T") | divrp = 0}.

For more details on these operators and spaces, we refer the readers to [7,9].
In this paper, we consider the modified Maxwell’s Steklov eigenvalue problem of finding (A, u) € R x
H (curl; Q) such that

(curlu, curlv) — K*(e,u,v) = —\Sur,vr), Vv € H(curl; Q). (2.1)

Here k is the wavenumber which is real and positive and e, is the relative permittivity. Assume that the media is
isotropic and dielectric, i.e., €, is a real scalar function. In addition, we require that €, is smooth, bounded and
away from zero. More precisely, there exist constants o > 0 and 3 > 0 such that ¢, € H*(Q2) and o < ¢, < .
For u,v € L*() and f,g € L(T"), define

(u,v) = /Q u(@) v(@)dV(z) and  (f.g) = / f(@) - g(@) dA().

We also use (-, -) to denote certain duality of spaces on the boundary. There are two equivalent ways to define
the surface-divergence-free projection operator S. One is Sp = curlrq with ¢ € H!(T) /R satisfying

(curlpg, curlpy)) = (u, curlpy), Vi € HY(T). (2.2)

The above definition can be applied on, say, p € yr H (curl; Q) or p € Lf(l"). The other is Sy = p+ Vpp with
p € HY(T')/R being the solution of

(Vrp, Vry) = —(u, Vi), vip € HY(T), (2.3)

which can be applied on, say, u € v H (curl; Q) or u € L*(I).

Let 7, be a regular tetrahedral mesh for polyhedron 2 with size h. The faces of 75 on I' induce a triangular
mesh for I'. We use the notations in Chapter 5 of [21] to denote by W), C H (div, ) the divergence-conforming
finite element space of degree k, by V;, C H(curl; Q) the curl-conforming finite element space of degree k, and
by U, C H'(Q) the Lagrange element space of degree k. In addition, denote by UL < H'(T) the Lagrange
element space of degree k on the boundary. We shall mainly discuss the case when k& = 1.

Denote by 7} : H(curl;Q2) DV — Vj, and 73 : H(div; Q) D W — W), the interpolation operators. Here } and
W are suitable subspaces such that the interpolations are well-defined and bounded (see e.g., [21], Lem. 5.38).
The finite element spaces Wy, V}, and Uy, satisfy the de Rham complex (see e.g., [21], (5.59)), which implies

curl V}, € Wy, VU, C Vy, and curl 7r,11'v = ﬁicurlv for v e V. (2.4)

Moreover, the kernel of curl in V}, is VU;, (see e.g., [2]).
Based on the definitions of S by (2.2) and (2.3), the two finite element approximations Sy, and S, are defined

as follows. §h : Lf T — Lf (T") is such that Spp = curlrg, with g5, € U};/R being the solution of
(curlpgy, curlpe)y,) = (u, curlpyy,), Yy, € Uy, (2.5)
And S), : L(T') — L}(T) is such that Spu = g + Vrpy, with p, € UL /R being the solution of
(Vrpn, Ven) = —(, Vrvn), Vi, € Uy (2.6)
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Note that S, and S, can be defined on larger spaces than LZ(T").
In the rest of this section, we collect some results that will be used later. All except the last two of these
lemmas can be found in [15] and references therein. Let Z C H(curl;2) and Z;, € V}, be such that

Z ={u€ H(curl; Q)| (¢,u,Vp) =0, Vp € H'(Q)}
and Z; = {uh e Wy | (eruh,Vph) =0, Vp, € Uh}.

Lemma 2.1 (see e.g., [15], Lem. 2.1 and Sect. 3.1). The spaces H (curl; Q) and V3, can be decomposed, respec-
tively, as

H(cur,Q) = Z® V(HY(Q)/R)  and Vi, = Z, & V(Un/R).

Definition 2.2. Denote by P : H(curl;Q)) — Z and Py, : Vj, — Zj, respectively, the projection operator
according to Lemma 2.1.

Lemma 2.3 (see e.g., [15], Lem. 2.2). For 0 < s < sq with some parameter sq > 0 dependent on the geometry
of Q, it holds that

Z C H(curl; Q) N Ho(div; Q) ¢ HY?**(Q) and ~4rZ c H® (D),
and foru € Z
lull1/245,0 < Clluflcar,e  and HUT”H-j(F) < Cllulleurt,o-

From now on we use s to represent some positive number which is less than sq.

Lemma 2.4 (see e.g., the proof of Lem. 3.4 from [15]). For z;, € Zp,, it holds

I =P)znll < ORY2E2 )z

curl,Q X curl, Q"

Next, we consider the continuous and discrete source problems, as well as the associated operators. Denote
by a(-,-) and a4 (-,-) the sesquilinear forms on H(curl; Q) x H(curl; Q) such that

a(u,v) = (curlu, curlv) — x*(e,u, v),
at (u,v) = (curlu, curlv) + (e,u,v).

Formally, let L : H(divlq;F) — H(curl;Q)), Ly, : H(divlq;F) — Vi, LT : H(div%;F) — H(curl;Q), /_’,Z :
H (div};T) — Vi, K : L*(Q) — Z and Kj, : L*(Q) — Zj, be the operators such that

a(Lf,v) = (f,vr), Vv € H(curl; Q2), (2.7)
a(Lnf,vn) = (f,vnr) Yoy € Vi, (2.8)
ar (LY fv) = (f,vr) Vv € H(curl;Q), (2.9)
ayt ([:Jrf, h) = <f Vp, T> Yo, € Vi, (2.10)
ay (Kw,v) = —(k% + 1)(e,w, v), Yv € Z, (2.11)
ay (Kpw,vy) = —(k* + 1) (e,w, vp,), Yoy, € Zp, (2.12)

for f € H(divlq;F) and w € L?(Q). Note that the domain of £, Ly, L1 and L’; are set to be H(divlq;F), a
strict subset of L7(T'). The source problems (2.9)-(2.12) are clearly well-posed. For the well-posedness of (2.7)
and (2.8), we assume the uniqueness, that is, we assume that x2 is not a Neumann eigenvalue defined below.
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Definition 2.5. We call x? a Neumann eigenvalue of the Maxwell’s equation if there exists a non-trivial function
u such that

curlcurlu — k¢, u = 0, in 2,

v X curlu =0, onT.

Definition 2.6. Let A = {h,,}52; be such that h,, — 0 as n — oo. Let X denote a general Hilbert space. A set
{Fn| X — X,h € A} of bounded linear operators is called collectively compact if, for each bounded set U C X,
the image set {Fpu|Yu € U,Vh € A} is relatively compact.

It can be shown that K is compact and {K}}, is collectively compact as operators from L*(2) to itself (see
e.g., [15], Sects. 2 and 3). As a consequence the source problems (2.7) and (2.8) are well-posed. We gather in
the following lemma the well-posedness of the problems (2.7)-(2.10).

Lemma 2.7 (see e.g., [21], Thm. 2.51, [15], Sects. 2 and 3). For h small enough, the operators (I +K)~* and
(I+Kp)~" exist and are (uniformly in h) bounded from L*(Q) to L*(). Moreover, £ and L, have the following
representations,

L={I+K)7'Ct and L,=I+Ky) 'L
LY, L, £ and Ly, are (uniformly) bounded.
It is easily seen that ran(£) C Z and ran(Ly) C Zp. One has the following error estimate.
Lemma 2.8 ([15], Thm. 3.7). ||£ — Ly|| < ChY/2.
To obtain regularity of the solution of (2.2) and (2.3), we shall apply the following result.
Lemma 2.9 ([8], Thm. 8). Given g € H"(I') with r > —1, the solution p € H*(T')/R of

—Arp=yg
admits p € HTY(T') /R with t < min{sr, 1 + 1}, where sy > 0 is some parameter depending on the shape of T.

A direct use of the definitions of S, Sj, and S, gives one the following.

Lemma 2.10. The operators S, S, and Sy, are linear and bounded from L?(T') to L?(T'). Moreover, they are
orthogonal projection operators under the L?(T) inner product, and given f,g € L}(T), it holds that

(Suf.g) = (Suf,Sng) = (£, Sng) = (SF,Sng) = (Shf,Sna),
(Snf,g) = (Suf,Sng) = (f,Sng),

which implies that on L?(I") we have
S, =858=S, SiS=88, =58 SuSh=35rSn=Sh.

Proof. Given f,g € L}(T), we have by definition ¢5, € UL, ¢ € HY(') and ¢» € H(T') such that Spf =
f+Vroén, Sf = curlpg and Sg = curlpy. Then by the definition of Sf and Sg we have the following

(I=38)f,8g) = (I —8)f, curlry) =0, (I —8n)f,Sg) = (~=Vroén, curlpy) = 0.

Hence we have the first line of equalities verified, by which we can show that

<SShfvg> = <Shfvsg> = <-faSg> = <Sfag>7

which means SS;, = S on LZ(I"). The rest can be proved similarly. O
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Note that S can be defined on v H (curl; ), and S is still self-adjoint on vy H (curl; Q) (see [11], Lem. 3.1).
In [11] the solution operator of (2.1) is defined from H (divlq; I) to itself by SyrL, which is inconvenient for
the current paper. Instead, we define for (2.1) another solution operator 7 such that

T:L}T) — L}T), T =S8LS.
We show in the following that 7 is compact and indeed represents the spectrum of (2.1).

Lemma 2.11. 7 is compact and self-adjoint. There is a bijection between the eigenpairs of T and those of
(2.1) for nonzero eigenvalues.

Proof. Given f € LZ(T"), ¢ € HY(I')/R in (2.2) is well-defined, thus Sf € H(divlq;r). Then due to the well-
posedness of £, it holds u := LS f € Z. Using the remark of [14], we have that curlrur € L3(T') and

Jeurloug o = v - curlully < Clluflgug + CISFllor < ClISF

or < Clflor (2.13)
Therefore, the regularity result of Lemma 2.9 indicates that for the solution ¢ € H*(I')/R of
(curlprg, curlpy)) = (ur, curlpy), Vi € HY(I),
it holds that ¢ € H**(I')/R with ¢t < min{sr, 1}. Consequently,
Tf =Sur =curlpg e H (T)N H(divg;I’).

Since H' (T) N H (divlq; I') is compactly embedded in L?(T), T is well-defined and compact.
Given f,g € L}(T), we have

(Tf,9)=(SvyrLSf.g) = (vrLSf, Sg) = a(LSf,LSg)
=(Sf,1rLSg) = (f.SyrLSg) = (f. Tg).
Hence 7 is self-adjoint. Note that we have used the assumption that e, is real.
Given an eigenpair (A, u) of (2.1), A # 0, we have L(ASur) = wu. Hence SyrL(ASur) = Sur, i.e.,

(=1/X,Sur) is an eigenpair of 7. On the other hand, given an eigenpair (u, f) of 7, u # 0, then 7f = puf.
Therefore L(1/pu)SyrLSf = LSf, i.e., (—1/p, LSf) is an eigenpair of (2.1). O

3. FINITE ELEMENT METHOD USING S},

For the completeness of the theory, also as a preparation for the next section, we first analyze the finite
element method that uses Sj, as the discretization (see (2.5)). Instead of defining the corresponding solution
operator 7, (as is done in [15]) from H (div};T) to H (div(;T), we shall define it from L7 (') to L7(T). One
consequence is that, the operator 7,, thus defined is self-adjoint on LZ(T'), while 75, defined in [15] is not on
H (div;T).

Consider the discrete eigenvalue problem of finding (Xh, up) € R x V}, such that

a(uh,vh) = _Xh<§huh,T7'Uh,T>a Yoy, € V3. (3.1)
Let the solution operator of (3.1) be defined as

T : Li(D) = L}(T), T = SpyrLnSh.
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Lemma 3.1. ﬁ are uniformly bounded and self-adjoint. There is a bijection between the eigenpairs of (3.1)
and those of Ty, for nonzero eigenvalues.

Proof. Since the range of §h is contained H (divOF;F), L;,Sh are well-defined and uniformly bounded from
L") to L(T). Hence 7;, are well-defined and uniformly bounded. Moreover, for f € L?(I), noticing that

yr(I = P)LpSpf = Vrp for some p € H'/?(I'), we have ghyT(I — P)Ehghf = (. Therefore,
I Z0ll = 1Sy LrSnll = ISk P LS| < C.

That ’]Nﬁ is self-adjoint and the correspondence of the eigenpairs between 7~71 and (3.1) can be shown in the same
way as in Lemma 2.11. O

Next we prove the convergence of ﬁb to 7.

Theorem 3.2. |7 — 7| — 0.
Proof. We split 7 — Ty, into three terms

T — 7~—h = (S — gh)’VTES + gthE(S - gh) + g;ﬁT(ﬁ - ﬁh)gh. (3.2)
Given f € L?(I), by definition, (S — gh)'yTﬁSf = curlpg — curlpg, with ¢ and ¢, being the solution of (2.2)
and (2.5), respectively, with pu = y7LSf. As shown in Lemma 2.11, ¢ € H'*(TI") /R for t < min{sr, 1}. Hence
we have that

[curlrg — curlrgn|[o r < ChM||q|| gra+e (ry /-

Meanwhile, by the inequality (2.2) of [18] and (2.13), we obtain that

[Pl ry/m < Clleurleyr LS fllo p < ClISF

or S Cll o r
Therefore,

IS = Sw)yrL] < Ch' and  |[(S = Sp)yrLS|| < Ch'.

For the second term of (3.2), we consider its adjoint (SpyrL(S — Sp))* = (S — Sp)yrLSy. In fact, given
f.g € Ly (D),

(£, ShyrL(S — 81)g) = (Shf,vrL(S — Sh)g) = a(LShf, L(S — Sh)g)
= (v LSLF, (S — Sn)g) = (SYrLShF,g) — (ShyrLShf,g) = (S — SW)VrLSKE, g).

Using the previous results, it holds that
1SkrL£(S = Su)|| = (S — Sy LS| < (S — Sp)vrL]||Sull < Ch.

To treat the third term of (3.2), we use the decomposition in Lemma 2.1, along with Lemmas 2.3, 2.8 and 2.4
to obtain

1Sy (L — Li)Shl| = [|Spyr (£ — PLL)SK]| < CII(L — PLy)S]|
< OI(L — Ly)Sull + CII(T = P)LESH]| < ChY2|| S| + ChY > £, Sy < CRM2.

Putting all the terms together, we obtain that |7 — 75, || < Ch™»{1/2th 0, O
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Consequently, the eigenvalues of ’ZN'h approximate that of 7 with correct multiplicities and there are no spurious
modes. Next we apply the Babuska—Osborn theory [3] to show the convergence order of Xh. Let u be a non-zero
eigenvalue of 7 with multiplicity m and g, (;),7 = 1,...,m, be the eigenvalues of 7, that approximate u. Due
to Lemmas 2.11 and 3.1, let the eigenvalues A and Xh7(j) of (2.1) and (3.1), respectively, are such that A = —p~*
and >‘h,(j) = 7ﬁ}zb).

Let p(7) C C be the resolvent set of 7. For a simple closed curve C C p(7) which encloses only one eigenvalue
w1 (with multiplicity m) of 7, we define a projection operator E(u) by

1

_ _ -1
=5 C(z T) " dz.

E(p)

Let fy,..., fm € E:= E(u)L?(T) be independent eigenvectors of y with [fillor =1fori=1,...,m. Since T
is self-adjoint, £ = span{f,,..., f,.}, i.e., the eigenspace associated to p. Define

chan_ 1 S X _ 1 S ~—1
heo= z; h() = T, Z;'uh,(j)'
J= J=

Theorem 3.3. For a fized A £ 0, |\ — X‘,}fean\ < Ch?, for any ¥ < min{sr, 1/2}.

Proof. The Babuska—Osborn theory ([3], Sect. 7) implies that

A= <O T = T Fo £+ CINT = Tl el

i,7=1

The bound of the second term is given by Theorem 3.2: ||(7 — ’i’h)|E||2 < |17 - ’Z~'h||2 < Opmin{lL2t} | for
t < min{sp, 1}. For the first term, we rewrite it as

(T =T)fi ;) = (T =TI = Sn)f i ) + (T = T)Snfi (= Sn)f )
+{(T = T0)Snf 1 Snf ;).
Noting that S8 =38, by Lemma 2.10 and f, = —A\T f,, we follow the same argument as in Theorem 3.2 to

see that ||(I —Sp)f;llo.r = NS — S LSF; || < ChY||f;llo.r < Cht. Here C is dependent on . Consequently,
by Theorem 3.2, we have that

(T = T0)(T =S F i £+ (T = T)Snf iy (1 = Sp) f ;)| < CRmn/240203,

For the remaining term, we apply Lemma 2.10, the Galerkin orthogonality a(Lf — Ly f,vs) = 0 for all vy, € V},
and Lemma 2.8 to deduce that

(T = T0)Sn i Suf )| = (ST LShFi = SivrLaSnfis Suf )| = [ LSwFi = v LnSnfir Sh ;)]
= a(LShf; = LnSnfir L1 f;)| = |a(LSF; — LuShf i LShf; — LnShf;)|
< C|L — Ly ||Sk]* < Ch.

Altogether we obtain [A — Amean| < Cpmin{12t}  As min{min{sr,1},1/2} = min{sr, 1/2}, the desired estimate
holds for ¥ = min{¢,1/2}. O
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4. FINITE ELEMENT METHOD USING S},
Now consider the finite element eigenvalue problem of finding (A, ur) € R x V}, such that
a(un,vn) = —An(ShunT, V1), Yoy, € Vi, (4.1)

where Sy, is defined in (2.6). We start with the well-posedness of the corresponding source problem: for f € Lf (),
find up € V3, such that

a(up,vp) = (Spf, vn1), Yo, € V. (4.2)
In other words, to find u;, = L£,Sp, f. Formally, we characterize uy as the solution of the operator equation
(I + Kn)un = L Snf- (4.3)
Using the discrete decomposition V;, = Zj, @ V(U /R), we can show the equivalence between (4.2) and (4.3)
(see e.g., [15], Lem. 3.1).
Lemma 4.1. uy, € Vj, is a solution of (4.2) if and only if w, € L*(Q) is a solution of (4.3).

In what follows, we deal with the existence and (uniform) continuous dependence on f € L*(I') of uy. In
(4.3), the uniform boundedness of (I + k)~ from L*(R2) to L*(Q) is guaranteed by the collective compactness
of {Kp},,. Consequently, the operator (I +Kp,)™! =1 —K,(I+Kp)~! confined on V, is also uniformly bounded
from Vj, to Vj,. Hence it requires the uniform boundedness of £Sy, on L?(T) to show the well-posedness of
uyp,. However, what’s in hand now is only the well-posedness of /3; on H (div%; F), while the range of Sy, is not
contained in H(divlq; F). Noticing in the equation of LZ‘S;“

ar (LEShf,vn) = (Snf,vn1), Yy, € Vi,

the sesquilinear a4 (-, -) is coercive, hence what remains is to show the uniform boundedness of the right-hand-
side (Spf, vn 1) for vy, € V3.

Lemma 4.2. LSy, and L3Sy, are well-defined and uniformly bounded on L (T).
Proof. Note that
[(Snfsvnr)| = [(F, Snonr)| < [ Fllor

Decompose vy, into vy, = 25, + Vpy, according to V, = Zj, & V(U /R) and zj, into z), = zp0 + Vp" according
to H(curl; Q) = Z ® V(H'(Q)/R). It is easily seen that yrVp" = 2,7 — 2407 € L?(T'). We have

IShvnrllor = IShzn 7l r < ISh2zn0,7llo 1 + [|Shv2 VD" || -
On one hand, by Lemma 2.3, we have that

On the other hand, using the identity (I —7})Vp" + (I — 7})zno = (I — 7f)zn = 0, 7, Vp" is well-defined,
and it holds

||zh0T||01" C”Zh 0||cur1,Q < CHZthurLQ < CH’U}LHCUI‘I,Q'

[S172 V" | 1 < IShvrm VD || 1+ IS0 (I = 73) 20l -

Since curl ﬂ,lleh = micurl Vp" = 0 and W,lleh € V},, there exists ¢, € Uy such that ﬂ,lleh = Vqp,, which
implies there is g, = ¢n|r € U,l; and Sh*YTﬂ,lleh = S, Vrqn, = 0. In addition, we have that
1

S (1 = i) znollg r < e (T =7h)znollgr < 1T =7h)znollor = D= 1 =mh)znoll e
Fer, (D)
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where F' is a face of an element on the boundary. Let K be the element containing F. Noting that z, o €
H1/2+S(Q) and curl zj o € W}, we map (I — ’R’})Z}LO from the element K to the reference element K then map
back to see that

2
1 =72 znolls e < O (120l oo+ lewrlz0llg i) < ORIzl guen s < OF 100 a1
Altogether we obtain that
Ch*|lvnl|

Oth||curl7Q7 a‘nd |<Shf7vh7T>| g O||f||07r‘||'vh||curl)ﬂ'

(4.4)

curl,2’

[Shyr V" || <
[Shvnrllyr <

Using the coercivity and boundedness of a (-, -), we obtain the well-posedness of £;"Sy, on L7 (T') with Hﬁ;Sh H <
C'. Due to Lemmas 4.1 and 2.7, (4.3) and (4.2) are well-posed. Moreover,

LpSh = (I+ K:h)_lﬁzsh,
and ||£,Sh|| < C. The proof is complete. O
We now can define the solution operator 7;, : L?(T") — L?(T) for (4.1) by

Th = SkyrLnSh-

Lemma 4.3. 7, are uniformly bounded and self-adjoint. There is a bijection between the eigenpairs of (4.1)
and those of T, for nonzero eigenvalues.

Proof. Due to Lemma 4.2, 7;, are uniformly bounded with
170 < [|SkyrPLLSk|| + [|Spyr(I — P)LiSh|| < C + Ch* < C.

The self-adjoint property and the correspondence between the eigenpairs of 7;, and (4.1) can be shown the same
way as in Lemma 2.11. O

The proof of 75, converging to 7 and A, converging to A follows similar steps in that of Theorems 3.2 and 3.3,
respectively. However, there are several technical differences.

Theorem 4.4. |7 — 7| — 0.
Proof. Note that

T-T, = (8 — Sh)’)/TES + Sh'yT(ﬁ - ﬁh)S + Sh’yTﬁh(S - Sh). (4.5)

Given f € L?(T"), by definition, (S — Sp)yrLSf = Vrp — Vrp, with p and pj, being, respectively, the solution
of (2.3) and (2.6) with g = y7LSf. By Lemma 2.3 and the proof of Lemma 2.11, we have that Vrp =
(§=DyrLSf € H™ (T') for r < min{min{sq, 1/2}, min{sp, 1}} = min{sq, sr} with

IVepll, — p < LSFl, - + IS0 LSFl,. — r
< C||’C8f||1/2+r,ﬂ + C”CuﬂF’YTCSfHoj < C”f”o,r-

Due to (17) of [8], it holds that

IVep = Vrpallor < CH Pl i oy m < ORI Vepll, 0 < CRT(|fllo s
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which implies that ||(S — Sp)yr LS| < Ch™.
For the third term of (4.5), we consider its adjoint (S —Sp)vrLrSh = (ShyrLa(S —Sh))*. Given f € L(T),

we write
(S - Sh)’yTﬁhShf = (3 - Sh)’yT’PL‘hShf + (S — Sh)’yT(I — P)EhShf.

By definition, (S — Sp)vrPLLSLf = Vr¢ — Vo, where ¢ and ¢, are the solutions of (2.3) and (2.6)
with p = 7 PLLSKLS, respectively. Similarly, we have Vr¢ = (S — DyrPLShf € H'(T) for r <
min{min{sq, 1/2}, min{sr, 1/2}} = min{sq, sr} (here r is assigned with the same value as in the above para-
graph) with

IVroll, v < vePLSFl, ¢ + ISvrPLLSF, _ ¢
S CIPLLSHS |11 j24r0 + Cllewrleyr PLESK (| 1 o
S CIPLrSHf lleuro + CIPLASHS lcuro < Clf llor

Therefore,
IVré = Vronllor < CH (9]l grir @y m < ORI VEdl, o < CRT[[Fllo p-
Meanwhile, using (4.4), we have for s € (r, sq) that
(S = Sn)vr (I = P)LuShfllor = ISkyr (I = P)LaSnfllor < CA LS llcun o < CP[I Fllo r-

Therefore, ||SpyrLi(S — Sp)|| = I1(S — Sp)vr LnSh|| < Ch™.
Similar to the proof of Theorem 3.2, we insert a P into the second term of (4.5) to obtain that

1Syr (£ = L1)S| < [Spyr (£ = PLR)S|| + |Shyr (P — 1) LS| < ChY? + Ch* < Ch?,
where we have used again (4.4). Altogether, we obtain |7 — 7,|| < Ch"™ — 0. O

Now we show the convergence order of A\,. Let u be a nonzero eigenvalue of 7 with multiplicity m and
Bh,)>J = 1,...,m, be the eigenvalues of 7;, that approximate p. Let A and A, (;) be, respectively, the related
eigenvalues of (2.1) and (4.1) with A = —u~! and Aj, ;) = —u;l(j). Define

1 m
)\?ean — E j;/\h’(j) = — Z,uh j)

Theorem 4.5. For a fized A # 0, |A — A < Ch?", for any r < min{sq, sr}.
Proof. By the Babuska—Osborn theory,

A=A <O YD (T = T)fi £5)| + CINT = Tl (4.6)
ij=1
It holds that
<(T - Zl)fia .fj> = <37T£3fiafj> - <Sh'YT['h8h.fiv.fj>
= (v LSfi,SF;) — (v LnSnfi, Sufi) = (yr(L—Lu)fi f)
=a((L—Lp)fi, Lf;) =a((L—Lp)f; (L= Ln)F;),

where we have used Lemma 2.10, f, = —AT7f,, and the Galerkin orthogonality. By Lemma 2.8,
|((T = Tn)f, f;)| < Ch. Using Theorem 4.4, we have that |(7 —74)|g|| < [|T —Zal| < Ch". Therefore,
we conclude from (4.6) that |A — A°*"| < C’hzr O

Comparing the results of Theorems 3.3 and 4.5 we see that the convergence order we obtain for \j is not
greater than that of \p.
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5. ADDITIONAL APPROXIMATION PROPERTIES

In this section we assume the parameters x and e, are such that a(,-) is positive definite on H (curl; Q) x
H (curl; Q). Define an operator T : H(curl; Q) — H(curl; Q) by

T = ,CS"/T.

It can be easily shown that there’s a bijection between the eigenpairs of T and those of (2.1) for nonzero eigenval-
ues. The operator T is also compact since the range of T is contained in H/?(curl; Q) = {u € H?(Q) | curlu €
HY2(Q)} (see e.g., [15], Lem. 2.7), which is compactly embedded in H (curl; Q). Moreover, T is self-adjoint
with respect to the inner product induced by a(-,-), as

a(Tu,v) = (Sur,vr) = (ur, Svr) = a(u, Tv),
for u,v € H(curl; ). Consider an auxiliary eigenvalue problem of finding ()\(,)L, uh) € R x V}, such that
a(uh,vh) = _)\(})L<Suh,T7'Uh,T>7 Yvy, € V3. (5.1)

Then for (3.1), (4.1) and (5.1) we define the corresponding solution operators as Tj, : Vi, — Vi, Tp, : Vi, — Vi
and T9 : V}, — V}, respectively, such that

Th = LuSwyr, Th = LuSwyr, TS = LiSyr.

Similarly, we can show that ’E‘h, T}, and T% are bounded, self-adjoint with respect to the inner product induced
by a(-,-), and there are respectively bijections between eigenpairs of these operators and those of (3.1), (4.1)
and (5.1).

Let Aj, ,\h,j,XhJ and )‘273‘ be the j-th eigenvalues in descending order of (2.1), (4.1), (3.1) and (5.1), respec-
tively. Namely, A\; = Aji1, Anj = Anjst, Xh,j > Xh7j+1 and )\?LJ > )‘g,j—&-l for j = 1,2,.... Under the setting
of this section /\j,)\hd,xh,j and )\(,)L)j are negative. Let i, up 5, in,; and M?L,j be the eigenvalues of T, Th,’ﬁ‘h
and T9 corresponding to )\j,)\hyj,xh,j and )\g,j, respectively, i.e., A\j = —u;l, Ahj = —u;;-, Xh,j = —ﬁ;é and
A ;= —(uf) ;)7 Denote by V1) the set of all subspaces of H (curl; Q) with dimension j, and by Vh(]) the set
of all subspaces of V}, with dimension j. Then, for A; we have the min-max property

-1
L= — .71 - — 3 _ .
S <Emv’f min o(Tu, u)/a(u, u>) Jnin maa(u, w)/(Sur, ur).

Similarly, the min-max property holds for A ;, X;L,j and /\27 o

/\h,j = — rnin_ max a(uh,uh)/<8huh7T,uh7T>,
EhEV,SJ) upEE)

Ap,j = — min  max a(uhvuh)/<§huh,Tauh,T>7
Enev, ) un€Ey

)‘?m' =— min max a(up,up)/{(Sunr, UnT).
E}LEV}EJ) up €l

If there is no ambiguity we shall omit the subscript -;, and use X, Ap, Xh, )\2 to represent \;, Ap j, thj, )\g’j with
the same fixed j.
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Lemma 5.1. )y, > )\2 > Xh,
Proof. Given f € L(I'), by Lemma 2.10, we have that
<Shf7f>_<8fvf> Shf7f>_<S.f7f>_<f78f>+<8fa8f>

(
<Sh.f7‘5h.f> - <Sf78h.f> - <Shf78f> + <Sf38f>
1(Sh — S)flle - = 0.

Similarly,
(SF.£) — (Suf. f) = (SF.£) = (SuF. f) = (. Snf) + (Suf . Sn )
= (S5F,5F) — (Suf.SF) — (SF.Suf) + (Suf, Snf)
= (S = Sw)fll.r > 0.
Then the min-max property implies that A, > )\(,)Z > Xh. O

Since Vj, is a subset of H(curl;2), one has A > A\). As a consequence, Xh converges to A from below, as
concluded in the following proposition.

Proposition 5.2. )\ > Xh.

Next we consider a refinement 7y, satisfy

‘/ht C Vh

;.. of the mesh 75,,. Thus the finite element spaces for 75, and 73, ,

o and UL C U};H. Define an eigenvalue problem of finding (/\ZZH’“’M) € R x V4, such that
hies 5
a(un,,vn;) = —/\hiﬂ<5hi+1uh1:,T,vm,T>7 Vop, € Vh,.

Then the j-th eigenvalue XZ”; is given by

Yhit1
At

Y R min max a’(uhi?uhi)/<§hi+luhi7T’ uhi;T>'

En,; GV,S) wn; €En;
Given f € L{(I'), there exists g, € U}, C U,fiﬂ such that Sy, f = curlpgy,. Hence

<§hi+1f7§hif> = <f7§h1f>

Consequently, the same argument as in Lemma 5.1 yields <§hi+1f, f) = (g’hl.f, f), which, by the min-max
o we obtain

property, implies that XZ > Xh Using again the min-max property and the inclusion V;, C Vj,

"

i+17
1 = )\Z’;“. Hence the following monotonicity of A; holds.

Proposition 5.3. For meshes 7, and T, ,, with 7, , a refinement of Th,, An, .y 2 An, -

6. CONCLUSION

_ In this work, we propose new definitions of the solution operator 7 and two finite element approximations
7T, and 7, for the modified Maxwell’s Steklov eigenvalue problem. With the help of these operators, we are able
to prove the convergence order of eigenvalues for both finite element methods. Moreover, the ordering between
the eigenvalues A\; and Ap, and the monotonic converging property of Aj, are proved. Besides, it is observed in
numerical results of [15] that A, has the same monotonic converging property as Aj. This property of A, is



300 B. GONG

interesting to investigate, since, if Ay truly converge from below, we can claim using Lemma 5.1 that the finite
element method (4.1) is a better choice than (3.1).

Acknowledgements. The research was partially supported by China Postdoctoral Science Foundation Grant
2019M650460.
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