An integral equation formulation of the N -body dielectric spheres problem. Part II: complexity analysis
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S625-S651

This article is the second in a series of two papers concerning the mathematical study of a boundary integral equation of the second kind that describes the interaction of N dielectric spherical particles undergoing mutual polarisation. The first article presented the numerical analysis of the Galerkin method used to solve this boundary integral equation and derived N-independent convergence rates for the induced surface charges and total electrostatic energy. The current article will focus on computational aspects of the algorithm. We provide a convergence analysis of the iterative method used to solve the underlying linear system and show that the number of liner solver iterations required to obtain a solution is independent of N. Additionally, we present two linear scaling solution strategies for the computation of the approximate induced surface charges. Finally, we consider a series of numerical experiments designed to validate our theoretical results and explore the dependence of the numerical errors and computational cost of solving the underlying linear system on different system parameters.

DOI : 10.1051/m2an/2020055
Classification : 65N12, 65N15, 65N35, 65R20
Keywords: Boundary integral equations, complexity analysis, linear scaling, $$-body problem, polarisation
@article{M2AN_2021__55_S1_S625_0,
     author = {Bramas, B\'erenger and Hassan, Muhammad and Stamm, Benjamin},
     title = {An integral equation formulation of the $N$-body dielectric spheres problem. {Part} {II:} complexity analysis},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {S625--S651},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {Suppl\'ement},
     doi = {10.1051/m2an/2020055},
     mrnumber = {4221318},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020055/}
}
TY  - JOUR
AU  - Bramas, Bérenger
AU  - Hassan, Muhammad
AU  - Stamm, Benjamin
TI  - An integral equation formulation of the $N$-body dielectric spheres problem. Part II: complexity analysis
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - S625
EP  - S651
VL  - 55
IS  - Supplément
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020055/
DO  - 10.1051/m2an/2020055
LA  - en
ID  - M2AN_2021__55_S1_S625_0
ER  - 
%0 Journal Article
%A Bramas, Bérenger
%A Hassan, Muhammad
%A Stamm, Benjamin
%T An integral equation formulation of the $N$-body dielectric spheres problem. Part II: complexity analysis
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P S625-S651
%V 55
%N Supplément
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020055/
%R 10.1051/m2an/2020055
%G en
%F M2AN_2021__55_S1_S625_0
Bramas, Bérenger; Hassan, Muhammad; Stamm, Benjamin. An integral equation formulation of the $N$-body dielectric spheres problem. Part II: complexity analysis. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S625-S651. doi: 10.1051/m2an/2020055

[1] E. Agullo, B. Bramas, O. Coulaud, E. Darve, M. Messner and T. Takahashi, Task-based FMM for multicore architectures. SIAM J. Sci. Comput. 36 (2014) C66–C93. | MR | Zbl | DOI

[2] A. Appel, An efficient program for many-body simulation. SIAM J. Sci. Stat. Comput. 6 (1985) 85–103. | MR | DOI

[3] J. Barnes and P. Hut, A hierarchical O ( N l o g N ) force-calculation algorithm . Nature 324 (1986) 446–449. | DOI

[4] K. Barros and E. Luijten, Dielectric effects in the self-assembly of binary colloidal aggregates. Phys. Rev. Lett. 113 (2014) 017801. | DOI

[5] K. Barros, D. Sinkovits and E. Luijten, Efficient and accurate simulation of dynamic dielectric objects. J. Chem. Phys. 140 (2014) 064903. | DOI

[6] P. Blanchard, B. Bramas, O. Coulaud, E. Darve, L. Dupuy, A. Etcheverry and G. Sylvand, ScalFMM: a generic parallel fast multipole library. In: SIAM Conference on Computational Science and Engineering, 2015.

[7] H. Boateng and R. Krasny, Comparison of treecodes for computing electrostatic potentials in charged particle systems with disjoint targets and sources. J. Comput. Chem. 34 (2013) 2159–2167. | DOI

[8] M. Brunner, J. Dobnikar, H.-H. Von Grünberg and C. Bechinger, Direct measurement of three-body interactions amongst charged colloids. Phys. Rev. Lett. 92 (2004) 078301. | DOI

[9] H. Cheng, L. Greengard and V. Rokhlin, A fast adaptive multipole algorithm in three dimensions. J. Comput. Phys. 155 (1999) 468–498. | MR | Zbl | DOI

[10] H. Clercx and G. Bossis, Many-body electrostatic interactions in electrorheological fluids. Phys. Rev. E 48 (1993) 2721. | DOI

[11] W. Dehnen, A very fast and momentum-conserving tree code. Astrophys. J. Lett. 536 (2000) L39. | DOI

[12] J. Dobnikar, Y. Chen, R. Rzehak and H.-H. Von Grünberg, Many-body interactions in colloidal suspensions. J. Phys.: Condens. Matter 15 (2002) S263.

[13] G. Efstathiou, M. Davis, S. White and C. Frenk, Numerical techniques for large cosmological N -body simulations. Astrophys. J. Suppl. Ser. 57 (1985) 241–260. | DOI

[14] M. Eiermann and O. Ernst, Geometric aspects of the theory of Krylov subspace methods. Acta Numer. 10 (2001) 251–312. | MR | Zbl | DOI

[15] S. Eisenstat, H. Elman and M. Schultz, Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 20 (1983) 345–357. | MR | Zbl | DOI

[16] H. Elman, Iterative methods for large, sparse, nonsymmetric systems of linear equations, Ph.D. thesis, Yale University New Haven, CO (1982).

[17] B. Fischer, Polynomial Based Iteration Methods for Symmetric Linear Systems. In: Vol. 68 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, PA (2011). | MR | Zbl

[18] K. Freed, Perturbative many-body expansion for electrostatic energy and field for system of polarizable charged spherical ions in a dielectric medium. J. Chem. Phys. 141 (2014) 034115. | DOI

[19] Z. Gan, S. Jiang, E. Luijten and Z. Xu, A hybrid method for systems of closely spaced dielectric spheres and ions. SIAM J. Sci. Comput. 38 (2016) B375–B395. | MR | DOI

[20] W. Geng and R. Krasny, A treecode-accelerated boundary integral Poisson-Boltzmann solver for electrostatics of solvated biomolecules. J. Comput. Phys. 247 (2013) 62–78. | MR | DOI

[21] A. Greenbaum, Iterative Methods for Solving Linear Systems. In: Vol. 17 of Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, PA (1997). | MR | Zbl

[22] L. Greengard, The rapid evaluation of potential fields in particle systems, ACM Distinguished Dissertations. MIT Press, Cambridge, MA (1988). | MR | Zbl

[23] L. Greengard, The numerical solution of the N -body problem. Comput. Phys. 4 (1990) 142–152. | DOI

[24] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations. J. Comput. Phys. 73 (1987) 325–348. | MR | Zbl | DOI

[25] B. Grzybowski, A. Winkleman, J. Wiles, Y. Brumer and G. Whitesides, Electrostatic self-assembly of macroscopic crystals using contact electrification. Nat. Mater. 2 (2003) 241–245. | DOI

[26] M. Hassan, Mathematical analysis of boundary integral equations and domain decomposition methods with applications in polarisable electrostatics. Ph.D. thesis. RWTH Aachen University (2020).

[27] M. Hassan and B. Stamm, An integral equation formulation of the N -body dielectric spheres problem. Part I: numerical analysis. ESAIM:M2AN (2020). https://doi.org/10.1051/m2an/2020030. | MR | Numdam

[28] M. Hassan and B. Stamm, A linear scaling in accuracy numerical method for computing the electrostatic forces in the N -body dielectric spheres problem. Commun. Comput. Phys. Preprint arXiv:2002.01579 (2020)). | MR

[29] R. Hockney and J. Eastwood, Computer Simulation Using Particles. CRC Press (1988). | Zbl | DOI

[30] E. Jurrus, D. Engel, K. Star, K. Monson, J. Brandi, L. E. Felberg, D. H. Brookes, L. Wilson, J. Chen, K. Liles and M. Chun, Improvements to the APBS biomolecular solvation software suite. Protein Sci. 27 (2018) 112–128. | DOI

[31] A. Knebe, A. Green and J. Binney, Multi-level adaptive particle mesh (MLAPM): a c code for cosmological simulations. Mon. Not. R. Astron. Soc. 325 (2001) 845–864. | DOI

[32] P. Li, H. Johnston and R. Krasny, A Cartesian treecode for screened coulomb interactions. J. Comput. Phys. 228 (2009) 3858–3868. | MR | Zbl | DOI

[33] Y. Liang, N. Hilal, P. Langston and V. Starov, Interaction forces between colloidal particles in liquid: theory and experiment. Adv. Colloid Interface Sci. 134 (2007) 151–166. | DOI

[34] J. Liesen and P. Tichý, Convergence analysis of Krylov subspace methods. GAMM-Mitt. 27 (2004) 153–173. | MR | Zbl | DOI

[35] E. Lindgren, B. Stamm, H.-K. Chan, Y. Maday, A. Stace and E. Besley, The effect of like-charge attraction on aerosol growth in the atmosphere of Titan. Icarus 291 (2017) 245–253. | DOI

[36] E. Lindgren, A. Stace, E. Polack, Y. Maday, B. Stamm and E. Besley, An integral equation approach to calculate electrostatic interactions in many-body dielectric systems. J. Comput. Phys. 371 (2018) 712–731. | MR | DOI

[37] E. Lindgren, B. Stamm, Y. Maday, E. Besley and A. Stace, Dynamic simulations of many-body electrostatic self-assembly. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 376 (2018) 20170143. | DOI

[38] P. Linse, Electrostatics in the presence of spherical dielectric discontinuities. J. Chem. Phys. 128 (2008) 214505. | DOI

[39] I. Lotan and T. Head-Gordon, An analytical electrostatic model for salt screened interactions between multiple proteins. J. Chem. Theory Comput. 2 (2006) 541–555. | DOI

[40] L. Mccarty, A. Winkleman and G. Whitesides, Electrostatic self-assembly of polystyrene microspheres by using chemically directed contact electrification. Angew. Chem. Int. Ed. 46 (2007) 206–209. | DOI

[41] J. Merrill, S. Sainis and E. Dufresne, Many-body electrostatic forces between colloidal particles at vanishing ionic strength. Phys. Rev. Lett. 103 (2009) 138301. | DOI

[42] R. Messina, Image charges in spherical geometry: application to colloidal systems. J. Chem. Phys. 117 (2002) 11062–11074. | DOI

[43] M. Messner, B. Bramas, O. Coulaud and E. Darve, Optimized M2L kernels for the Chebyshev interpolation based fast multipole method. Preprint arXiv:1210.7292(2012).

[44] N. Nachtigal, S. Reddy and L. Trefethen, How fast are nonsymmetric matrix iterations? SIAM J. Matrix Anal. App. 13 (1992) 778–795. | MR | Zbl | DOI

[45] H. Pohl, Giant polarization in high polymers. J. Electron. Mater. 15 (1986) 201–203. | DOI

[46] J. Qin, J. De Pablo and K. Freed, Image method for induced surface charge from many-body system of dielectric spheres. J. Chem. Phys. 145 (2016) 124903. | DOI

[47] J. Qin, J. Li, V. Lee, H. Jaeger, J. De Pablo and K. Freed, A theory of interactions between polarizable dielectric spheres. J. Colloid Interface Sci. 469 (2016) 237–241. | DOI

[48] Y. Saad, Krylov subspace methods for solving large unsymmetric linear systems. Math. Comput. 37 (1981) 105–126. | MR | Zbl | DOI

[49] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edition. Society for Industrial and Applied Mathematics, Philadelphia, PA (2003). | MR | Zbl

[50] Y. Saad and M. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7 (1986) 856–869. | MR | Zbl | DOI

[51] S. Sauter and C. Schwab, Boundary Element Methods. In: Vol. 39 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin-Heidelberg (2011). | MR | Zbl | DOI

[52] E. Shevchenko, D. Talapin, N. Kotov, S. O’Brien and C. Murray, Structural diversity in binary nanoparticle superlattices. Nature 439 (2006) 55–59. | DOI

[53] Z. Xu, Electrostatic interaction in the presence of dielectric interfaces and polarization-induced like-charge attraction. Phys. Rev. E 87 (2013) 013307. | DOI

[54] E.-H. Yap and T. Head-Gordon, Calculating the bimolecular rate of protein–protein association with interacting crowders. J. Chem. Theory Comput. 9 (2013) 2481–2489. | DOI

Cité par Sources :