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AN INTEGRAL EQUATION FORMULATION OF THE N-BODY DIELECTRIC
SPHERES PROBLEM. PART II: COMPLEXITY ANALYSIS

BERENGER BRAMAS!, MUHAMMAD HASSAN?** AND BENJAMIN STAMM?

Abstract. This article is the second in a series of two papers concerning the mathematical study of a
boundary integral equation of the second kind that describes the interaction of N dielectric spherical
particles undergoing mutual polarisation. The first article presented the numerical analysis of the
Galerkin method used to solve this boundary integral equation and derived N-independent convergence
rates for the induced surface charges and total electrostatic energy. The current article will focus on
computational aspects of the algorithm. We provide a convergence analysis of the iterative method used
to solve the underlying linear system and show that the number of liner solver iterations required to
obtain a solution is independent of N. Additionally, we present two linear scaling solution strategies for
the computation of the approximate induced surface charges. Finally, we consider a series of numerical
experiments designed to validate our theoretical results and explore the dependence of the numerical
errors and computational cost of solving the underlying linear system on different system parameters.
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1. INTRODUCTION

N-body problems are ubiquitous in a wide variety of physical fields including quantum mechanics, molecular
dynamics, astrophysics, and electrostatics. In the field of chemical physics, N-body problems arise naturally
when one considers the interaction of a large number of charged particles (see, e.g., [4,8,10,12,25, 30, 33, 35,
40,41,52,54]). If the particles are composed of a polarisable dielectric material, then a full description of the
electrostatic interaction can typically not be obtained as simply the sum of pairwise Coulomb-type interactions.
Consequently, more elaborate numerical methods based either on so-called image charge methods (see, e.g.,
[42,46,47,53]) or multipole expansion approaches (see, e.g., [10,38,39]) have been developed (see also the BEM-
based approach in [5] and the expansion-based approach of [18]). Unfortunately, these numerical methods may
become prohibitive in terms of computation time for a large number of particles and furthermore, are often
formulated in a manner which makes them unsuited for a systematic numerical analysis. The lack of a numerical
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analysis in turn means that one cannot evaluate theoretically the accuracy of these methods, and in particular
one cannot explore the dependence of the accuracy on the number of dielectric particles V.

The quality of an N-body numerical method can be assessed by considering how the accuracy and computa-
tional cost of the algorithm scale with N. To fix terminology

— We say that an N-body numerical method is N-error stable if, for a fixed number of degrees of freedom per
object and assuming other properties such as the minimum inter-sphere separation are kept constant, the
relative error in the approximate solution does not increase with N. Establishing that a numerical method is
N-error stable requires a rigorous numerical analysis of the algorithm in question, which immediately rules
out many of the existing algorithms cited above.

— We say that an N-body numerical method is linear scaling in cost if, for a fixed number of degrees of freedom
per object and assuming other properties such as the minimum inter-sphere separation are kept constant,
the numerical method requires O(N) operations to compute an approximate solution with a given and fixed
tolerance. Typically, linear scaling in cost requires the use of fast summation methods such as tree codes (see,
e.g., [2,3,7,11,20,32]) including the so-called Fast Multipole method (see, e.g., [9,22-24], or particle-mesh
and P3M methods (see, e.g., [13,29,31]). If the N-body numerical method also involves solving a linear
system, then one would additionally have to show that the number of solver iterations required to obtain an
approximate solution does not grow with N.

— Finally, we say that an N-body numerical method is linear scaling in accuracy if it is both N-error stable and
linear scaling in cost. Linear scaling in accuracy methods can be viewed as the gold-standard for N-body
problems since these methods require only O(N) operations to compute an approximate solution with a
given average error (the total error scaled by N) or relative error.

Lindgren and coworkers recently proposed in [36], a computational method based on a Galerkin discretisation
of a second-kind boundary integral equation that describes the induced surface charges resulting from the inter-
action of a large number of dielectric spheres embedded in a homogenous polarisable medium and undergoing
mutual polarisation. We emphasise three particular features of this proposed method:

(O1) Numerical experiments suggest that the method is indeed N-error stable.

(O2) Numerical experiments indicate that the number of linear solver iterations required to solve the underlying
linear system is independent of the number N of dielectric spheres. Since the FMM allows the solution
matrix to be multiplied with arbitrary vectors using O(N) operations, the numerical method also seems
to be linear scaling in cost.

(03) The algorithm is based on a Galerkin discretisation of a second kind boundary integral equation so it is
particularly suited for rigorous numerical analysis.

(O1) and (O2) taken together suggest that the proposed Galerkin method is linear scaling in accuracy.
Importantly however — and in contrast to several of the existing N-body algorithms cited above — (03) suggests
that it might actually be possible to rigorously prove this result. The first article [27] in this series of two
papers introduced a new analysis of second kind boundary integral equations posed on spherical domains and
presented a detailed error analysis of this method. In particular, the article derived convergence rates for
the induced surface charge and total electrostatic energy that did not explicitly depend on the number N
of dielectric spherical particles in the system. Consequently, under suitable geometrical assumptions, it was
rigorously demonstrated that the numerical method was indeed N-error stable.

The goal of the current article is to present a detailed complexity analysis of the Galerkin method proposed by
Lindgren and coworkers with the goal of showing that the method is linear scaling in cost. Our main result shows
that — under suitable geometrical assumptions — the number of linear solver iterations required to solve the linear
system obtained from the Galerkin discretisation up to a given tolerance is independent of N. Since the FMM
allows us to compute approximate matrix-vector products involving the solution matrix using O(N) operations,
it follows that an approximate solution with a given and fixed relative error can indeed be constructed by means
of an iterative method using only O(N) operations. In other words, the numerical method is linear scaling in
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cost. Combined with the analysis presented in [27] which establishes N-error stability, this result confirms that
the Galerkin method proposed by Lindgren and coworkers is linear scaling in accuracy.

The remainder of this article is organised as follows. In Section 2, we introduce notation, describe the problem
setting and the governing boundary integral equation, and restate key results from our first paper [27]. The
complexity analysis, main results and proposed solution strategies are presented in Section 3. In Section 4, we
present numerical results that support the analysis of Section 3, and finally in Section 5, we state our conclusion
and discuss possible extensions.

2. PROBLEM SETTING AND PREVIOUS RESULTS

Throughout this article, we will use standard results and notation from the theory of boundary integral
equations. The setting and notations stated here are essentially identical to those introduced in the first article
[27] and are taken primarily from the book of Sauter and Schwab on boundary element methods [51].

2.1. Setting and notation

Although we are formally interested in studying all geometrical configurations that are the unions of an
arbitrary number N of non-intersecting open balls with varying radii in three dimensions, as pointed out in the
first contribution [27], our claim of N-independent bounds requires us to impose certain technical assumptions
on the types of geometries we consider. To this end, we denote by Z a countable indexing set, and we consider
a so-called family of geometries {Qr}rcz. Each element Qz C R? in this family is the (set) union of a fixed
number of non-intersecting open balls of varying locations and radii with associated dielectric constants, and
therefore represents a particular physical geometric situation. Consequently, each element Q2 of this family of
geometries is uniquely characterised by the following four parameters:

— A non-zero number Nz € N, which represents the total number of dielectric spherical particles that compose
the geometry Q.

— A collection of points {x7 }f\;ﬁ € R3, which represent the centres of the spherical particles composing the
geometry Qr.

— A collection of positive real numbers {7 }N%
composing the geometry Qr.

~ A collection of positive real numbers {x7 }ZI\LFO Here, s denotes the dielectric constant of the external
medium while {x] },]ifl represent the dielectric constants of each dielectric sphere.

€ R, which represent the radii of the spherical particles

Indeed, using the first three parameters we can define the open balls Qf: = B, (x;) CR® i€ {l,...,Ns}
which represent the spherical dielectric particles composing the geometry Qz, i.e., Qr = Uili lef . Moreover,

the fourth parameter {7}, denotes the dielectric constants associated with this geometry. Following [27], we
now impose the following assumptions on the above parameters:

A1 (Uniformly bounded radii). There exist constants r> > 0 and r3° > 0 such that

inf min ri]:>ri° and sup max ri}-<7’3_°.
FET i=1,...,.Ng Fer i=1,...Nx

A2 (Uniformly bounded minimal separation). There exists a constant € > 0 such that

i i F F F_.F
jnf min (i = xf =l =) > e
i#j

A3 (Uniformly bounded dielectric constants). There exist constants £°° > 0 and £5° > 0 such that

inf min fif
FeT i=1,...Nr

o0

> k> and sup max k] < K.

Fer1 *=1,....,Nx
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In other words we assume that the family of geometries {Q#} rc1 we consider in this article describe physical
situations where the radii of the dielectric spherical particles, the minimum inter-sphere separation distance
and the dielectric constants are all uniformly bounded. These assumptions are required because the subsequent
bounds we will derive, while explicitly independent of the number of dielectric particles Nz, do depend on other
geometrical parameters, and we would thus like to avoid situations where these geometric parameters degrade
with increasing Nx.

In the remainder of this article, we will consider a fixed geometry from the family of geometries {Qz}rcz
satisfying the assumptions (A1)—(A3). To avoid bulky notation we will drop the superscript and subscript F
and denote this geometry by 7. The geometry is constructed as follows: Let N € N, let {xi}ZN:1 € R? be a
collection of points in R? and let {r;}}*., € R be a collection of positive real numbers, and for each i € {1,..., N}
let Q; := B,,(x;) C R? be the open ball of radius r; > 0 centred at the point x;. Then Q= C R? is defined as
Q= UN Q. Furthermore, we define QF := R3\ Q~, and we write 9 for the boundary of 2~ and 7(x) for the
unit normal vector at x € 9 pointing towards the exterior of Q. Moreover, we denote by {x;}Y; € R, the
dielectric constants of all spherical particles {Q;}~ ; and by ko € R, the dielectric constant of the background
medium. For clarity of exposition, we also define the dielectric function x: 9Q — R as k(x) := k; for x € 9Q;.
Notice that by definition for each i € {1,..., N}, either %[5, > 0 or “"¢[yq, € (—1,0].

Following standard practice, we define the Sobolev space H'(Q7) := {u € L*(Q7): Vu € L*(Q7)} with
the norm [[ull3 o) = Y ull 720, + IVullZ2(q,)- Next, we define C&5,,,(QF) = {ulo+: ue CFR?)}
where C§°(R®) denotes the set of infinitely smooth functions with compact support in R3, and we define
the weighted Sobolev space H'(21) as the completion of CSS, (1) with respect to the norm Hu||ip(9+) =

comp

Jor % dx + [+ [Vu(x)|? dx. Functions that satisfy the decay condition associated with exterior Laplace
problems will belong to this space®. In addition, we denote by H 3 (09Q) the Sobolev space of order % equipped
with the Sobolev—Slobodeckij norm H)\H;%(BQ) =N ||)\||%2(89i) + Joq, Joa, %dsxdsy. Moreover,
we define H—2(09) := (H B (BQ)>* and we equip this Sobolev space with the canonical dual norm

<U7¢> -3 3
H™2(0Q)xH?Z2(0Q) VUEH_%((?Q),

loll -1 .o ==  sup
H™3 (09
2 (60) 0£peH S (09) [KG[ Y (89)

where (-, '>H‘%(aQ)xH% 6%) denotes the duality pairing between H~2 (9€2) and H2 (99).

We introduce v~ : HY(Q™) — H2(8Q) and y": HY(QF) — H2(Q) as the continuous, lincar and surjec-
tive interior and exterior Dirichlet trace operators respectively (see, e.g., [51], Thms. 2.6.8 and 2.6.11). More-
over, for s € {+,—}, we define the closed subspace H(Q*) := {u € H(Q%): Au = 0 in Q°}, and we write
vy H(QT) — H~2(89) and v HOQY) — H~2(8Q) for the interior and exterior Neumann trace operator
respectively (see [51], Thm. 2.8.3 for precise conventions). The interior and exterior Dirichlet and Neumann trace
operators can be defined analogously for functions of appropriate regularity on O~ U Q% or R3. Furthermore,
we introduce DtN: Hz(9Q) — H~2(9Q) as the so-called (interior) Dirichlet-to-Neumann map that takes as
input boundary data in H 3 (09), computes the interior harmonic extension in H'(Q7), and yields as output the
interior Neumann trace of the harmonic extension in H~2(9€2). Note that Local Dirichlet-to-Neumann maps
may be defined analogously on each sphere 09;,i =1,..., N.

Next, for cach v € H=2 (), A € Hz(9Q) and all x € R3\ 9 we define the functions

v(y) 1
S0 = [ Pty and DA = [ M) Ty g dy.
o0 4mlx —y| o0 Vdrlx —y|
The mappings S and D are the single layer and double layer potentials respectively. It can be shown (see, e.g.,
[51], Chap. 2) that S is a linear bounded operator from H~2(8) to H! (R3) and D is a linear bounded

3The space H!(Q2T) that we have defined here corresponds to the space H!(—A,QT) in Section 2.9.2.4 of [51].
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operator from Hz (%) to H} (R3*\ 0Q), and both S and D map into the space of harmonic functions on the
complement R? \ 9 of the boundary. Equipped with these potentials, we define the following bounded linear
boundary integral operators:

Vi= (v 08): H 3(8Q) — H:(dQ), K = (7— oD+ %1) D H2(09) — H2(09),
W= —(yyoD): H%(ﬁﬂ) — Hﬁé(aﬁ), K= (’y;, oS — %I) : Hﬁé(aﬂ) — Hﬁé(aﬂ).

Here I denotes the identity operator on the relevant trace space. The mapping V is the single layer bound-
ary operator, the mapping K is the double layer boundary operator, the mapping X* is the adjoint double
layer boundary operator and the mapping W is the hypersingular boundary operator. Detailed definitions and
properties of these boundary integral operators can be found in Chapter 3 of [51]. We state two properties in
particular that will be used in the sequel.

Property 1 ([51], Thm. 3.5.3). The single layer boundary operator V: H~2(9Q) — H = (dQ) is hermitian and
coercive, i.e., there exists a constant ¢y > 0 such that for all o € H_%((’?Q) it holds that
2

(:Y0) 44 ooyt om) Z VNN -5 gy
This implies in particular that the inverse V=': Hz(9Q) — H~2(dQ) is also a hermitian, coercive and
. . . . 1
bounded linear operator. Consequently, V induces a norm || - ||y, and associated inner product on H ™2 (9€2) and
the inverse V! induces a norm || - [|y—1 and associated inner product on Hz (9).

Property 2 ([51], Thm. 3.5.3). The hypersingular boundary operator W: Hz (99) — H?z () is hermitian,
non-negative and coercive on a subspace of H %(89), i.e., there exists a constant cyy > 0 such that for all

functions A € H3(0Q) with "N ] S, A(x) dx‘ — 0, it holds that

> eyl Al 4 .

(WA, )\>H’%(8Q)><H%(8Q) = H? (09)

2.2. Dielectric spheres electrostatic interaction problem

Let us now state the problem we wish to analyse. In order to avoid trivial situations, we assume throughout
this article that x; # ko for all j = 1,..., N (see also the justification of this assumption in [27], Rem. 2.5).
Integral equation formulation for the induced charges

Let oy € H~2(09). Find v € H~2 () with the property that

Ko — K 47

— (D) = oy (2.1)

Here, 0y € H —3 (09) is called the free charge and is a known quantity. Physically, this is the charge (up to a
scaling factor) on each dielectric sphere in the absence of any polarisation effects, i.e., if kK = kg. The unknown
veH ’%(89) is called the induced surface charge. Physically, this is the charge distribution that results on
each dielectric sphere after including polarisation effects.

Remark 2.1. Details on how to derive the boundary integral equation (2.1) from a PDE-based transmission
problem and a proof of our initial claim that the BIE (2.1) is a boundary integral equation of the second kind
can be found in [27].

As discussed in the first paper [27], a direct analysis of the BIE (2.1) is not feasible if we wish to obtain
continuity and inf-sup constants that are independent of the number N of dielectric particles in our problem.
Consequently, it is necessary to adopt an indirect approach and reformulate the boundary integral equation (2.1)
in terms of a so-called surface electrostatic potential A\ := Vv € H 3 (09). Indeed, in view of Property 1 above we
see that A = Vv defines an isomorphism from H~2(9€2) to H? () and we can thus write an equivalent BIE.
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Integral equation formulation for the surface electrostatic potential
Let 0f € H~2(09). Find X € H%(ﬁQ) with the property that

)\fVDtN<KO *”/\) — Ty, (2.2)
Ko Ko

For clarity of exposition, we define the relevant boundary integral operators.

Definition 2.2. We define the linear operator A: H=(9Q) — Hz(8Q) as

AN = A —VDtN(“O - “A) VA € H?(99).

Ko
In addition, we denote by A*: H~=(9Q) — H~2(dQ) the adjoint operator of A.

Next, we define the approximation spaces and state the Galerkin discretisation of the boundary integral
equation (2.1). In the sequel, we will denote by Ny the set of non-negative integers.

Notation. Let £ € Ny and m € {—/,...,¢} be integers. We denote by V,: S> — R the real-valued L>2-

orthonormal spherical harmonic of degree ¢ and order m.

Definition 2.3 (Approximation space on a sphere). Let Oy, C R3 be an open ball of radius r > 0 centred at the
point Xo € R3 and let £y € No. We define the finite-dimensional Hilbert space Wmax(90y,) C Hz (00x,) C
H~2(80y,) as the vector space

Linax m=+L

X — Xp m
W‘emax (3OXU) : {U 3Oxo — R such that u Z Z myem <_XO|) where all [u]é € R}7

=0 m=—¢
equipped with the inner product

Lmax m= +€

(Us V) W tmax (905, ) *= r? 2 Z Z 17 0] Vu,v € Whax(90,,). (2.3)

=1 m_—Z
It is now straightforward to extend the Hilbert space defined in Definition 2.3 to the domain 0f2.

Definition 2.4 (Global approximation space). Let £y € Ng. We define the finite-dimensional Hilbert space
Whnex (9Q) € Hz (0Q) C H~2(99) as the vector space

W e (9Q2) 1= {u: 89 — R such that Vi € {1,..., N}: uloq, € meax(aszi)}

equipped with the inner product (u,v)y emax (90) = Zfil (u, ’U)ngax(aﬂi) Yu,v € Whnax(9Q).

Galerkin discretisation of the integral equation (2.1)

Let oy € H_%(GQ) and let £iay € N. Find vy € Whmax(9Q) such that for all 1,
that

Whmax (9€2) it holds

max max

" 4m
(A Vémax’ ¢€xnax)L2 (OQ) = ?O (Uf’ ¢€max)L2 (BQ) ° (24)

Once again, a direct analysis of the Galerkin discretisation (2.4) is not feasible since we are unable to obtain
N-independent stability constants. This difficulty was circumvented in [27] through the introduction of a so-
called “reduced” global approximation space and a “reduced” Galerkin discretisation of the BIE (2.2) for the
surface electrostatic potential. We present here only the essentials of this approach.
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Definition 2.5. We define the N-dimensional, closed subspace C(9Q) C H=(dQ) as the vector space
C(O) :={u: 90 — R: ¥i=1,..., N the restriction u|sq, is a constant function} ,

equipped with the L2(9Q) norm. Additionally, we define the subspaces Hz (99) ¢ Hz(8) and H~2(8Q) C
H~2(09) as the vector spaces

w\»—A

H3(09) = {u € H?(09): (1,v)2(00) =0 Yo € C(99)

“H0) = {se B 00): (6.0)

l\)\»—t

i oayxmt oo ~ 0 Vo € C(@Q)} ’

equipped with the respective fractional Sobolev norms introduced earlier. Moreover, we denote the pro-
jection operators associated with these decompositions as Py: Hz(0Q) — C(89), Qp: H™2(0Q) — C(9),
Pt : H2(09Q) — Hz2(09Q), and Q¢ : H=(9Q) — H~=(9Q).

Intuitively, the spaces H2 (8Q) and H~2(dQ) are trace spaces that do not contain any piecewise constant
functions. It can therefore be shown that on these spaces, the Dirichlet-to-Neumann map DtN: Hz(9Q) —
H _%(89) is a continuous bijection. Naturally, these spaces can also be defined on an individual sphere.

Next, we introduce new norms on the underlying trace spaces. As shown in [27], these norms are an essential
ingredient in the analysis of the integral operators A* and A.

Definition 2.6. We define on H2 (9) a new norm ||| - |||: H2(8Q) — R given by

1
VA€ HE(99): [|IMI1? = [PoAl72(00) + (DINAA) 3 e o)

and we define on H~2(99) a new dual norm ||| - |||*: H~2(89) — R given by
. (o, ¢>H’§ (0Q)x H2 (99)
0£PEHS (99)
It was shown in [27] that the norm ||| - ||| is equivalent to the usual || - ||H%(BQ) norm, i.e., there exists
a constant Cequiv > 1 that is independent of N such that for all A € H %(BQ) i
H)\H 6%) < Cequiv][|A]||. Similarly, the new ||| - |||* dual norm on H~2(09) is equivalent to the canonical dual
norm || ||H, 3 o0) with an equivalence constant that is once again independent of N. Furthermore, it is a simple

exercise to prove that for all A € Hz(9Q) it holds that
[IIDENA|" = [[|A]]]

In the sequel, we adopt the convention that the Hilbert spaces Hz (), H2 (952) are equipped with the [||- |||
norm (and associated inner product) and that the dual spaces H~2 (9€2), H~2 (9Q) are equipped with the ||| - |||*
norm. Notice that on the space W¥m=x(9(2), the ||| - ||| norm and the || - ||y tmax (90) norm coincide. With this
convention, we define additional mappings that will be of use in the next section.

Definition 2.7 (Orthogonal projectors on the approximation space). Let ln.x € Ng and let the approxi-
mation space Whmax (9Q) be defined as in Definition 2.4. We denote by P, : Hz(9) — W= (9Q) and
Qq,,..: H=2(09) — Whnax(9€) the orthogonal projection operators on these spaces.

Definition 2.8. We define the linear operator A: Hz (9Q) — H2(09) as A := Py APZ, and we refer to A as
the “modified” boundary integral operator.
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Finally, we define the “reduced” approximation spaces associated with the Galerkin discretisation of the
“modified” boundary integral operator A.

Definition 2.9 (Reduced global approximation space). Let lnax € N. We define constructively the finite-
dimensional Hilbert space W= (8Q) c Hz(8Q) as the set

Wi (00) i= {u € Wh(09): Pou = 0},

equipped with the (-, )y tmax (p0) inner product.

“Reduced” Galerkin discretisation of the integral equation (2.2) with modified RHS

Let oy € H2(8Q), let layx € N, and let Qp, . : H™2(9Q) — Whx(9Q) be the orthogonal projection

operator. Find Ay, € Wi (9Q) such that for aﬁ‘a;gmx € Wim=(99) it holds that

_47r

(A)\Emax7 o“emax) L2(BQ) - ?0 (VQemax Uf’ Uemax)L2(BQ) N (2'5)

max

Notice that equation (2.5) is not exactly the Galerkin discretisation of the BIE (2.2) on the reduced approx-
imation space Woe‘“ax (09). This is because the right-hand side of equation (2.5) is not precisely the projection
of the right-hand side of the BIE (2.2) onto W™ (9Q) unless oy € W'max(9Q). There are two main reasons
we introduce this so-called “reduced” Galerkin discretisation of BIE (2.2) with modified right-hand side. First,
it is possible to obtain continuity and discrete stability constants for A that are independent of N. Indeed, we
have the following result:

Throrem 2.10. Let the set Ni C N consist of indices i € {1,..., N} such that kloq, > ko and the set N_ C N

consist of indices j € {1,..., N} such that k|aq; < ko, and let the constants C ; and 3 ; be defined as
min {min N, SR min ey S EeThy }
— : YIS ) JEN_ %0 ™ ko
C;:=1+max E- Ry (Cequlv) , and fj;:= Tt -l (2.6)
aYy) \/Cy Kj—Ko

maszl,m’N o

Then it holds that

— The operator A: Hz(09) — H=(9Q) has dense range, is bounded above with constant C ; and bounded below
with constant (3 ;.

— The finite-dimensional operator Py,

and bounded below with constant (3 ;.

Proof. See Lemmas 4.5, 4.10, and 4.13 in [27]. O

A: Wh(9Q) — W= () is also bounded above with constant Ci

Second, as the next lemma shows, if we have obtained a solution to equation (2.5) then a solution to the
original Galerkin discretisation (2.4) for the induced surface charge can be computed easily.

Lemma 2.11. Let of € H™7(9Q), let bax € N, let Q. : H~2(09Q) — W (9Q) denote the orthogonal pro-
jection operator, let Ny, € Wim=() be the solution of the “reduced” Galerkin discretisation (2.5) with right
hand side defined through o, and let vy, € Whx(9Q) be the solution of the original Galerkin discretisation
(2.4) with right hand side defined through oy. Then it holds that

Ko — R

4
Vigax = DtNAg,... + —Qp0 f-
Ko o)

Proof. See the proof of Theorem 4.17 in [27]. O

Theorem 2.10 and Lemma 2.11 can together be used to prove that both the BIEs (2.1) and (2.2) as well
as the Galerkin discretisations (2.4) and (2.5) are well-posed, and to obtain convergence rates for the induced
surface charge that do not explicitly depend on N (see [27] for details).
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3. CONVERGENCE ANALYSIS OF THE LINEAR SOLVER AND SOLUTION STRATEGIES

Throughout this section, we assume the setting described in Section 2. Before proceeding to our main results
however, let us describe in more detail the obstacles we face in performing a detailed convergence analysis.

Our main goal it to prove that we can obtain a solution — up to given and fixed tolerance — to the Galerkin
discretisation (2.4) for the approximate induced surface charge vy .. using only O(N) operations. Naturally,
computing a solution to the finite-dimensional equation (2.4) involves solving a linear system, which is typically
done using a Krylov subspace solver. Consequently, in order to obtain the required O(N) scaling, we must
show that

(B1) It is possible to perform matrix vector multiplications involving the underlying solution matrix using O(N)
operations;

(B2) It is possible to obtain an upper bound independent of N on the number of iterations of the Krylov
subspace solver required to obtain the solution of the linear system (up to some tolerance).

Let us first consider (B1). Notice that the underlying boundary integral operators A* and A defined through
Definition 2.2 are constructed from the single layer boundary operator V, the Dirichlet-to-Neumann map DtN,
the identity map, and the dielectric function . Given our choice of approximation space Wmax the DtN map,
the identity map and the dielectric function x can be written as diagonal matrices. Furthermore, the Fast
Multipole method (FMM) can be used to compute the action of V on an arbitrary element of W%max up to a
given accuracy in O(N) operations. Thus, all matrix-vector products involving the solution matrix obtained
from the discretisation of A* (and also A) can be performed in O(N) up to a given accuracy (see also [36] for
more details).

Next, let us consider the statement (B2), which requires us to perform a convergence analysis of the Krylov
subspace solver used to solve the linear system arising from Galerkin discretisation (2.4). Here, we encounter the
first obstacle: It is well known that the convergence behaviour of Krylov subspace solvers depends crucially on
the spectrum of the operator that is being discretised, i.e., A*. The spectrum in turn depends on the continuity
and coercivity/inf-sup constants of the operator, which themselves are obtained through a detailed numerical
analysis. However, the analysis we presented in the first paper [27] (see also Thm. 2.10) derived explicit N-
independent continuity and inf-sup constants only for the “modified” boundary integral operator A and used an
indirect approach to obtain convergence rates for the Galerkin discretisation (2.4). Unfortunately, we have little
explicit information on the spectrum of A* and certainly no N-independent bounds on the largest and smallest
eigenvalues.

Our solution to this obstacle is to adopt once again an indirect route: Given a free charge oy € H *%(39).

Step 1. We solve the “reduced” Galerkin discretisation (2.5) to obtain A, € Wim(9Q) for some fyay € N.
This step will require the solution of a linear system using a Krylov subspace solver.

Step 2. We make use of Lemma 2.11 to compute the solution v, € W (99) to the original Galerkin
discretisation (2.4) using Mg, . This step does not require an additional linear system to be solved.

Naturally, the advantage of this strategy is that the required spectral information of the operator Ais available
from our prior analysis in [27].

It remains to perform a convergence analysis of the Krylov subspace solver used to solve the linear system aris-
ing from the Galerkin discretisation (2.5). We now encounter the second difficulty: Since the boundary integral
operator Ais obviously non-symmetric, we solve the linear system associated with the Galerkin discretisation
(2.5) using the GMRES solver introduced by Saad and Schultz [50]. And the convergence behaviour of GMRES
is, in general, considerably more complex than that of the well-known conjugate gradient (CG) method (see,
e.g., [34] for a comprehensive discussion).

Broadly speaking, the GMRES solver can be applied to four qualitatively different solution matrices A:

(M1) Symmetric matrices, i.e., A = AT In this case the convergence behaviour of GMRES depends only
the spectrum of the solution matrix. Moreover, since the spectrum of the solution matrix is purely real,
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estimates of the residual at each iteration can be obtained using only the largest and smallest eigenvalues
(see, e.g., [17], Chap. 3).

(M2) Non-symmetric normal matrices, i.e., AAT = AT A: In principle, the convergence behaviour of GMRES
in this case also depends only the spectrum of the solution matrix. However, since the spectrum of the
solution matrix need not be real, useful bounds on the residual at each iteration cannot be obtained using
only the eigenvalues with largest and smallest real parts. Instead one typically requires information on
the distribution of the full spectrum in the complex plane (see, e.g., [48], Sect. 4).

(M3) Non-normal diagonalisable matrices, i.e., A = X “IDX for some diagonal matrix D and non-unitary
matrix X: In this case, the convergence behaviour of GMRES is typically less known since estimates
on the residual at each iteration depend not only on the spectrum of solution matrix but also on the
conditioning of the matrix appearing in its diagonalisation, which in general is unknown (see, e.g., [49],
Chap. 6).

(M4) Non-diagonalisable matrices: In this case, the convergence behaviour of GMRES is significantly more
difficult to analyse and there are only partial theoretical results (see, e.g., [44] for an approach based on
the pseudospectrum and [14-16] for approaches based on the so-called field of values).

Consequently, in order to have a reasonable hope of analysing the convergence behaviour of GMRES applied
to the linear system arising from the Galerkin discretisation (2.5), we must show that the matrix discretisation
of A is either normal or diagonalisable. Unfortunately, the matrix discretisation of A is not normal since the
operators V and DtN do not commute in general. Consequently, we must prove that the matrix discretisation
of A is diagonalisable. Notice that since the convergence behaviour of GMRES depends on the conditioning of
the matrix appearing in the diagonalisation, the exact choice of diagonalisation is vital.

3.1. The diagonalisation of the operator A

We will assume throughout this subsection that the discretisation parameter ¢, € N is fixed. Additionally,
in order to obtain a useful diagonalisation, we will assume in the sequel that the dielectric function x satisfies
one of two conditions:

(1) Either k; > ko forall j=1,...,N.
(2) Or kj <kpforall j=1,...,N.

The necessity of the above assumption for the subsequent analysis will be discussed in Remark 3.5. Let us
point out however that from a practical point of view, this additional constraint is not too restrictive since
it covers the two cases which typically arise in physical applications: The case of weakly polarisable particles
embedded in a highly polarisable solvent and the case of highly polarisable particles embedded in a weakly
polarisable medium. Examples of the former include teflon, PMMA, polyethylene or polypropylene particles
in water (see [37]). Examples of the later include a wide range of Titanium-based oxides or certain highly
polarisable polymer particles in air (see [45]).

Definition 3.1 (Finite dimensional operators). Let A: ﬁ%(aQ) — H2(8Q) be the “modified” boundary
integral operator defined through Deﬁmtlon 2.8, 1 tV: H2(0Q) — H %(89) be the single layer boundary
integral operator and let DtN: Hz(8Q) — H~2(dQ) be the Dirichlet-to-Neumann map. Then we define
LW (09) — Wym(0Q), V.. Wem(0Q) — Wim=(09) and

max °

the finite dimensional operators Ag
DtNy

max *

L Wemex (09) — W= (99) as
Ay PrA, WV

Definition 3.2. We  define the L?-symmetric, positive definite, finite-dimensional  operator
DtNy - Wi (9) — Wi (9Q) as the mapping with the property that for all 1 € Wim=(99)
it holds that

max

=P, P;V, and DtN,  :=P, DtN.

max ° ‘gmdx max max max max

max

R — K

% | DNy, %

DtNy g, = imasc -

Lmax

Ko
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Consider Definitions 3.1 and 3.2 and let I,
follows that

Wim(9Q) — Wim(9Q) denote the identity mapping. It

max °

3.1
Ve DING if K < Ko. (3.1)

max max

_ { o A Ve DINE if k> ko,
Al = ¢ max
4

Equation (3.1) suggests a natural diagonalisation strategy: Since DtNy s symmetric positive definite, the
associated square root operator (DtN'Zmax)% L Wimas(9) — Wim=(992) can be defined and used to diagonalise A.

Definition 3.3. We define the L2-symmetric, finite-dimensional operator .ZZ?:X Wim(9Q) — Wim(99Q) as

if kK > Ko,

Nl ol

lmax *

o {Iem (DN, )V, (DENG, )
= 1

Iy (Dt V@max (Dt mdx) if Kk < Ko.

max Lmax )

Remark 3.4. Consider Definition 3.3. We observe immediately that the finite-dimensional operators A[max and
Afmax are similar, i.e., it holds that
Ay, = (DN} )72 A7™ (DN}, ). (3.2)

max

Although we have not obtained an explicit diagonalisation of Ay we have shown that it is similar to

max ?

the Lz—symmetrlc operator .Asy . In fact our subsequent convergence analysis does not require an explicit
diagonalisation and the relatlon (3 2) will be sufficient.

Remark 3.5. Consider Definition 3.3 and Remark 3.4. The key difficulty in extending such a symmetrisation
strategy to the case of a general dielectric function is that if » is such that slan, > ko and klan, < ko for

some i,j € {1,..., N} then the operator A, . cannot be written in the straightforward form (3.1) using the
operator DtNy . Of course, in this case we may choose to define (c.f., Def. 3.2), the modified finite-dimensional

operator
KR — Ko

DtNy,,,, Y = DtN,,,, v

max ?

Ko

in which case, we can indeed write Agmx Lo T Ve ]S‘LT\TZMX, but the modified operator ]S‘ET\TZMX used in
this construction is indefinite and therefore 1ts square root cannot be defined.

max

Since the finite-dimensional operator ﬂsy’:X will feature prominently in our subsequent convergence analysis,

we must obtain bounds on the spectrum of this operator. Notice that Asym is L?-symmetric, and thus has
purely real eigenvalues. The next lemma gives bounds on the smallest and largest eigenvalues of this operator.

Lemma 3.6. Let the symmetric, finite-dimensional operator AZTX L Wi (9Q) — W™ (9Q) be defined as in
Definition 3.3, let the continuity constant C'z of the operator A be defined as in Theorem 2.10, let the constant
ag € R be defined as
{1 if k> Ko,
Qo =

min Hﬁ if k<Ko,
and let pg € R and pmax € R denote the smallest and largest eigenvalue respectively of .Asym Then it holds that
po = g and  pmax < Cg.

Proof. We first prove the bound for the largest cigenvalue jimax € R. Let thlmax € W™ (9Q) denote the
eigenfunction corresponding to pig,ax. We then have by the similarity of the operators .Az and Az (see

Rem. 3.4) that

max

Cmax — ASYM 1 bmax _ £oyg A
,umax'(/)maax - ‘Aémax max — (DtN‘grnax)QAe

(DNG )~ Zqplmas,

max Linax max
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Define the function ¢fmax .= (DtN”)*% bmax A straightforward calculation then yields

max max °
I

lmax A Lrnax 2 Conax | [[2 1 Lrnax
umax¢max - Aemax max = ﬂmax‘ | |¢max | | | - | | |Aelnax max
Consequently, we obtain from Theorem 2.10 that pimax < C' 3.

Next, we prove the estimate for the smallest eigenvalue pg € R. Let wém‘“‘ € Wg”‘“ (09) denote the eigen-
function corresponding to g and define (/ﬁf;m"“‘ = (DtN“)_%wg"“‘“‘. A similar calculation as above yields that

OO = Aty 6 (3:3)
Consider first the case k > ro. We obtain from equation (3.3) and the definition of A, that

Lmax Lmax Cmax Lmax
po (06, DING._ o = (¢ DeNg_of

max lmax Lmax

+ (VDENG g, DN,

)L2(BQ) )L2(89)

Lmax
o)

)Lz(aﬂ)
> Lmax DtN®
- (% P max L2(09)

where the second step uses the coercivity of V (see Property 1 in Sect. 2.1). This yields po > 1
Next, consider the case x < k. We obtain from equation (3.3) and the definition of A,,___ that

(ﬂO _ 1) ( f)nlax7 DtNIZmaxd)gmax) _ (VDtNIZynax gmax7 DtNZé f)nlax (34)

max

L2(8Q) - )Lz(ag) '

K—Ko
Ko

We define the function ¢g’e"‘a" =
[51], Thm. 3.8.7) we see that

¢€m"“‘. Using the Calderon identity DtN = W + DtNVDtN (see, e.g.,

807 DING,

(VDtN'Z rbﬁ’““) = (Dthmgbg»‘mx, ¢gvfmax)

S (DtNede d)g:exx\ax’ ¢g7lmax)

Wmax Wmax
= (e gy

L2(8Q2) L2(8) L2(8Q)

3.5
Lo’ (3.5)

where the inequality follows from the non-negativity of the hypersingular operator W (see, e.g., Property 2 in
Sect. 2.1). Using this bound in equation (3.4) then yields

N
(DtNZmax ¢€max’ ¢€rﬂax) > _ Z

L2(0Q;)

Ko

N o
(o -1 Y |10

K
=1 0

2
Rj — Ko
0

(Dthmax ¢€max7 ¢€max)

K L2(09;)

Jj=1
Simple calculus and the fact that x < ro by assumption, allows us to conclude that yo > min;—; . n Z—é O

We now have all the ingredients necessary to analyse the convergence behaviour of GMRES applied to the
linear system arising from the “reduced” Galerkin discretisation (2.5).

3.2. GMRES convergence analysis and solution strategy

We begin this subsection by fixing some additional notation. As a first step we would like to write explicitly
the linear system arising from the Galerkin discretisation (2.5). In view of Definition 2.9 of our approximation
space Wg max (9(1), the natural choice of basis functions are the local spherical harmonics on each sphere.

Definition 3.7 (Choice of basis). Let fynax € N. We denote for each j € {1,..., N} and all £ € {1,...,lnax},
—¢ < 'm < ¢ the function Y] : 9Q — R defined as

) 0 {yem (ﬁ) for all x € 99,

Im .
0 otherwise,

and we equip the approximation space W™ (9) with the basis {J} }.
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Notation. Let /., € N. We will henceforth denote by M := N - ({ax + 1)> — N, the dimension of the
approximation space W= (952). Notice that the dimension of the space Wmax(9) is then given by M + N.

Remark 3.8. Consider Definition 3.7 of the basis functions on W(f"‘“" (09). These functions establish an iso-
morphism between W™ (9Q) and RM . Indeed, we associate an arbitrary ¢ € Wi=s(9Q) with ¢ € RM defined
as
[v,]7" = <¢’ygm>L2(69i) , for ie{l,....N}, Ce{l,....lmax} and |m|<{.
Consequently, given functions in the space Wg““‘" (09)), we will often refer to their vector representations
in RM and wvice versa. Moreover, to facilitate identification we will frequently use bold symbols for the vector
representations.

Definition 3.9. Let fmax € N, let Qg H-z (0Q) — Whmax(9€2) denote the orthogonal projection operator,

and let oy € H™ 2(99). Then
— We define the right-hand side vector o € RM as

max *

m 471- o
lof.]i = — - (VQu,..0f, ygm)wm ), for ie {1,...,N}, ¢e{1,... . fnax} and |m| </

— We define the diagonal positive definite matrix DtN" € RMXM a9
[DENG g = ((DtNZmax) yg,m,,ygm) , fori,j€{l,...,N}, 6,0 € {1,... fmax} and

L2(09;)
Iml, [m/| < £.

— We define the solution matrix A € RM*M g

(A = (Zgu,axyg,m,,y;m)mm), for i,j€{l,...,N}, 6,0 €{l,... luma} and |m|,|m'| <L

— We define the symmetrised solution matrix A%™ € RM*M ag

[Asym]“/ = (Asym yﬁ’ &) yém

)szm’ for i,j€{l,....N}, €60 €{l,... lua} and |ml,|m'| <.

Two remarks are now in order.

Remark 3.10. Consider Definition 3.9. A direct calculation shows that the matrices A and A®™™ are similar
and we have
A = (DtN")"' AY™"DtN".

Remark 3.11. Consider Definition 3.9. We emphasise that the solution matrix A and the symmetrised solution
matrix A®™ are nothing else than the representation in the basis of local spherical harmonics functions of the
finite-dimensional operators Az .. and Asym defined through Definitions 2.8 and 3.3 respectively. We can
therefore write the “reduced” Galerkin dlscretlsatlon (2.5) as expected in matrix form.

Matrix formulation of the “reduced” Galerkin discretisation (2.5)

Let lax € N, let 05 € H~2(89), and let the vector oy € RM and the matrix A € RM*M be defined as in
Definition 3.9. Find a vector A € RM such that

AX = o5 (3.6)

We are now ready to state our main convergence result.
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Throrem 3.12 (Convergence analysis for GMRES-based strategy). Let max € N, let oy € H=2(09), let

tae € WEmax () be the unique solutwn to the Galerkm discretisation deﬁned through equation (2.4) with right
hand side given by oy, and let Py : Hz2(09) — Hz(0Q) and Qp,,. : H=(9Q) — Wi (9Q) be the orthogonal
projection operators. Then for every e > 0 there exists a function v, € Whmax (0Q) and a natural number
R, > 0 that does not depend on the number of dielectric spheres N such that viP*'°* can be computed using at
most R iterations of GMRES and such that the following error estimate holds

m

Ve Il
émax /max

< €.
11"+ 221 |Pg Qe 11

| | |]P)8_ Vétnax
Proof. We begin by defining the affine transformation B: W(f""“" (09) — Whmax(9Q) as the mapping with the
property that for all ¢,__ € W(f“‘“" (09) it holds that

max

Ko —

K 4
Bwémax = DtN?Wbemax + K Qémaxaf' (3'7)
0

R0

Let Ay, € Wime (89) denote the solution to the “reduced” Galerkin discretisation (2.5). It follows from
Lemma 2.11 that B)\g Thus for any function 9y, € Wg"‘a" (092) it holds that

max — Plmax -

1 = Bt I = |||

max

DN (Mae = Yt ) |

*

Ko —

— K
|11t = Bl

Ko
< max‘

Let € > 0 be fixed and let € := ﬁ It follows that

HlaX| T

[11[Ae I <€ = [Vemar = Borualll” <€ (3-8)

max Lrmax max Lmax

We will therefore show that there exists a natural number R, that is independent of the number N of open
balls such that one can compute a function ¢, € W(f“‘a" (09) using at most R, iterations of GMRES and such
that

max

HHIRY: Il <e (3.9)

This will allow us to define v, = By, and hence complete the proof.

Consider the matrix equation (3 6). Let Ag € RM be some initialisation and let Ay € RM, k € N denote the
kth iterate generated by GMRES applied to this linear system. Next, let r; := oy — AX,, k € Ny denote the
kth residual. It is well known (see, e.g., [21] or [34]) that for all natural numbers k € N the GMRES residual ry,
satisfies

max Lrmax

approx .

Irille = min [[p (A) roll,» < min |[p(A) []|rol| 2, (3.10)
where 7, denotes the set of all polynomials p: R — R of degree at most & such that p(0) = 1, || - ||z denotes the
standard Euclidean norm in R™ and || - ||» denotes the matrix norm induced by the standard Euclidean norm
in RM,

Using Remark 3.10 and the fact that the matrix A®™ is symmetric, the bound (3.10) can be simplified (see,
g-, [34]) to obtain

Irille < min [|p (A7) [|, ]| (DEN") 7], [DEN"|, 7ol ..

< min max [p (sn) || (DEN") 7|, [ DEN"|,[[ro]| ..

pPETE N

where p,,n =0,..., M — 1 denote the (ascendingly ordered) eigenvalues of the matrix A*™. We now simplify
each term in this estimate.
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Due to Lemma 3.6 we know that all eigenvalues of A®™ are positive and we have explicit bounds on the
smallest eigenvalue pg and the largest eigenvalue pps—1 of this matrix. Consequently, we can employ the standard
approach of using Chebyshev polynomials of the first kind to estimate the min-max problem (see, e.g., [17],

Chap. 3). We thus obtain
k
Véa -1
. (670}
min max p ()| <2 T
pPETE N e
o+l
where ag, C 7 are bounds on the smallest and largest eigenvalues of A*™ respectively, as computed in Lemma 3.6.
Next, note that by definition, each non-zero entry of the diagonal positive definite matrix DtN" is given by

1
2

[DtNT 5™ = R ((DtNemx)Q zm,yim)mmj)
BN
— B2 2 for je{l, . N}, £e{l,. lun) and —£<m <L
Ko ’I“j

If we denote by xo, Xmax € R the smallest and largest entry respectively of the matrix DtN" we have

1 1
2 2

. |K— Ko . 8 K — Ko 3
X0 = min min r?, and Ypmax = max max 724/ lmax-
Ko j=1...N 7 Ko j=1...N 7
We thus obtain that
K\—1 1 1 K
H(DtN ) H2 = Yo = 1 5 and HDtN Hz = Xmax
0 : K—KQ 2 : 2
min “ro mms —i..., N Tj
1
K — Ko |? 3
= max max 7174/ Cinax-
7o) j=1...,N

The estimate (3.10) can therefore be bounded as

C ~

k 1
-4 -1 max |k — ko| maxj— n 73\ >
||rkH62 S 2 V Emax 20 ( 2 7 ; ”rOHZ?'

= - — — ‘
a04_~_1 min |k /<a0|m1nj_1.,,7Nrj

Next, for each £ € Ny we denote by )\i‘“‘”‘ € Wim=(9Q) the function associated with the vector A, € RM.
Using the fact that oy = AX and Definition 3.9, we obtain by a direct calculation that

. 1 1 4
= — A >  min . _ max
||’rk||e2 HAA Ak”[? = j=1,..N T] AzmaxAzmax Aemax)\k} 12(89)
1 1
mini_;_ n7r3\ 2 min;i—q_ N3\ "
=1, N T - T e ~ =1, N T lana
2 g ‘ ‘ ‘Aemax )\emax - Aémax )\k: ’ Z ﬁA E ) ‘ ‘)\emax - Ak} ’
max max

where the last step follows from Theorem 2.10. In a similar fashion if we pick the initialisation Ay = 0 we have

max”|'

3
rolle= < C,zj:frllf%?iN 2 {1

It therefore follows that

20 oy MAX—1 . N T3 -4 -1 _ 3
At = e[| < T ey | Vot WO RN ()
B minj—=j . N 75 QAJFI min |k — Ko|
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Finally, in view of equation (3.7) we observe that

Ko 1l 4m Ko .| 4 *
A |1 = H’m) —DtIN"'Fy (Vemax - ;(]szaxaf)m = H‘HO — P (Vemax - ;O@emaxaf)‘
Ko 47
< max| 0 (1B I + S0P Qunf )
— Ko Ko

Ko
K—KQ

, then the bound

1
. 2C ; maxj—1. . NT> 2 _ 2
Therefore, if we define the constant Yoymes = 4 —— 1N (m“‘” ’“"‘) max

Bz minj—; g’ min|k—ro]

(3.11) can be written succinctly as

k
Ca
Y2 4 A
a 7l
e B (N a=aTi T R

(-
: o
o T

’ < ToMmRES max

Consequently, we can define the natural number R, as

e
log ( Lmax YGMRES )

Re = (3.12)
e
log —
\/ a1
We then obtain
a7
Lrmax ~ 1 * i *
e = N[ < (1 vl + 0BG Qe
which yields using Inequality (3.8)
Linax
Wi = BN
1IPG Ve 11" + 2211 IPG Qe 04111
Defining v;?*"* := B)\%‘,ff" therefore completes the proof. O

Some explanatory remarks are now in order.

Remark 3.13. Consider the setting and proof of Theorem 3.12. In practice, the function v,""" := B)\f{a" €
Whnax (9Q) is represented as a vector vaPPr* ¢ RM+N_ This can be done as follows:

First, let A, € RM i.e., the R.th GMRES iterate, be the vector representation of )\%‘:“" € Whmax (99)). Next,
inspired by Definition 3.7, we equip the space W*max(9€)) with a basis of local spherical harmonics functions
{Vidoi€{l,...,N}and £ € {0,...,0max}, —¢ < m < {. Using the notation [Ay |7, i € {1,...,N} and
Ce{l,... . lmax}, =€ < m </ to denote the entries of Ag,:

— We define the vector ¥ € RM+N 39

[\I’}m— 0 for iE{l,...,N}, £,m =0,
il =9 rko—ny [)\%E]Zn(DtN)}Zim,ygm) for ie{l,....,N}, £€{l,...,lmax} and |m|<¢.

Ko

— We define the vector 0'? € RM+N gg

4 . )
o3 17" = — (05 Vim) 290,y for 1E€{L.. N}, £€{0,. . lmax} and |m| <L
0 7
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It then follows from Definition (3.7) of the affine map B that the vector representation v2PProx ¢ RM+N of

approx . . .
vy~ is simply given by

e B ¢ (3.13)
Remark 3.14. Consider the proof of Theorem 3.12. Equation (3.12) describes the behaviour of our bound R,

on the number of GMRES iterations required to obtain an approximate solution with relative error smaller
than e. In particular, we observe that

— R, grows moderately as log({max) for increasing fp,a.x. Here, £ax is the discretisation parameter for the

approximation space. As discussed in Section 4 on numerical results, we typically pick {yax € {5,...,20} so
we do not observe growth in the number of linear solver iterations for increasing f,,,x in practical numerical
simulations.

— R, grows as moderately log(Tgmrrs) for increasing Youmres. Here, Toumrrs is the constant defined in the
proof of Theorem 3.12 and depends on geometrical parameters such as the radii of the spheres and the
dielectric constants, and the continuity and inf-sup constant of the operator A.

- R, grows as \/%05. Here, C; and g are bounds on the largest and smallest eigenvalues respectively of the

symmetric, finite-dimensional operator .ZZ " (see Lem. 3.6) and are given by

1 if k> kg K — Ko | Cequi
=19 . . - Ox=1+max e
min % if Kk < Ko, Ko ey

Consequently, we would expect R, to be large if

— K < kg and min % is very small.

— K > Ko and max Kio is very large.

— The coercivity constant ¢y, is very small. We have shown in Lemma 4.7 of [27] that ¢, = O() for small 4,
where § is the minimum inter-sphere separation distance.

Remark 3.15. Theorem 3.12 show that one can obtain an approximation to the solution vy, of the Galerkin
discretisation (2.4) up to a given relative error tolerance e by solving the linear system (3.6) using GMRES,
and the number of iterations required is independent of N. Of course, in practice, the error of each GMRES
iterate is unknown and the solver is typically run until some relative residual tolerance is reached. Numerical
experiments we have performed (see Sect. 4 for specific geometric settings) indicate that the relative residual
is typically one order of magnitude larger than the relative error so a conservative strategy would be to set the
GMRES tolerance two orders of magnitude lower than the desired relative error tolerance.

GMRES-based solution strategy for obtaining the induced surface charge

Given a free charge oy € H —3 (09), the goal is to obtain — up to some given tolerance — the solution vy, €
Whmax (9€2) to the Galerkin discretisation (2.4) for the induced surface charge.

(1) Fix fmax € N and use Definition 3.9 to compute the right-hand side vector oy € RM. Due to the use of the
FMM, the total computational cost of this step is O(N).

(2) Use GMRES to solve — up to some tolerance — the linear system (3.6) involving A and oy. This
yields a solution vector A**P*** ¢ RM . Notice that A*P** is the vector representation of the function
AP € Wim=(€2) which is an approximation to the true solution A, of the “reduced” Galerkin dis-
cretisation (2.5). Thanks to the FMM, the cost of a single matrix vector product involving A is O(N).
Moreover, due to Theorem 3.12, the total number of iterations of GMRES required in this step is indepen-
dent of N. Consequently, the total computational cost of this step is also O(N).

(3) Following the procedure outlined in Remark 3.13, use the solution vector A***™* € RM to compute the
vector vPProx ¢ RMHN | Clearly, the computational cost of this step is O(N).
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(4) vPProx s now the vector representation of some function 1, ?*'** € Wtmx(9Q) that is the required approx-
imation of the true solution vy, to the Galerkin discretisation (2.4).

max

We conclude this subsection by emphasising the key implication of Theorem 3.12 and our solution strat-
egy: Given a geometrical configuration of N particles that satisfies appropriate geometrical assumptions, we
can compute- up to any given error tolerance — the solution to the Galerkin discretisation (2.5) using O(N)
operations. In other words the numerical method is linear scaling in cost. Since the main result in [27] derived
N-independent error estimates for the Galerkin discretisation (2.5) and thus established N-error stability, we can
conclude that the numerical method is also linear scaling in accuracy, i.e., in order to obtain the approximate
induced surface charge up to a fixed average or relative error, the computational cost scales linearly in .

3.3. An approach based on the conjugate-gradient method

Notice that the convergence analysis we presented in Section 3.2 relied crucially on the similarity of the finite
dimensional operators A defined through Definition 2.8 and AYm defined though Definition 3.3. The goal of
this section is to further exploit this similarity and outline a solution strategy based on the use of the conjugate
gradient (CG) method rather than GMRES. Throughout this subsection, we assume the setting of Section 3.2.

Definition 3.16. Let lrax € N, let o5 € Hfé(aﬁ), and let the vector oy € RM and the diagonal positive
definite matrix DtN” € RM*M he defined as in Definition 3.9. Then we define the vector o5 € RM as

5’? = DtNKO'f.

Using Definition 3.16, we can formulate a matrix equation associated with the symmetric finite-dimensional
operator A%Y™.

Symmetric matrix equation for A»™

Let lrax € N, let 05 € H*%((?Q), let the symmetric matrix A%™ € RM*M he defined as in Definition 3.9,
and let the vector o7 € RM be defined as in Definition 3.16. Find a vector A*™ € RM such that

AVmAY _ G (3.14)

Notice that equation (3.14) is well-posed since A™™ is symmetric positive definite (see Lem. 3.6). Furthermore,
if we denote by A € RM and A" € RM the solutions to the matrix equations (3.6) and (3.14) respectively,
then it is easy to see that

A = (DtN")~Ix»™, (3.15)

Equation (3.15) suggests that we can avoid the use of GMRES for solving the non-symmetric matrix equa-
tion (3.6) and instead solve the symmetric matrix equation (3.14) using the CG method. Our next result pertains
to the convergence analysis of this alternative approach.

Throrem 3.17 (Convergence analysis for CG-based strategy). Let lmax € N, let of € H_%(ﬁﬁ), let
vp,.. € Whax(0Q) be the unique solution to the Galerkin discretisation defined through equation (2.4) with
right hand side given by of, and let Py : Hz(0Q) — Hz(09Q) and Q. : H2(8Q) — W= (8Q) be the orthog-
onal projection operators. Then for every ¢ > 0 there exists a function v;*""™ € Whnax (0) and a natural
number S¢ > 0 that does not depend on the number of dielectric spheres N such that l/appmx can be computed
using at most S, iterations of the conjugate gradient method and such that the followmg error estimate holds

approx
Ve — Vemas |l oy

PG Ve I* + 251|IP5 Qe op 1

Proof. The proof of Theorem 3.17 is very similar to the proof of Theorem 3.12 so we omit it for the sake of
brevity. A detailed proof can be found in [26]. Let us remark however that the bound on the number of CG
iterations S, > 0 that we obtain is very similar to the bound R, for GMRES. O
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CG-based solution strategy for obtaining the induced surface charge

Given a free charge oy € H ~3 (0£2), the goal is to obtain — up to some given tolerance — the solution vy, .. €
Whmax (9€)) to the Galerkin discretisation (2.4) for the induced surface charge.

(1) Fix lmax € N and use Definitions 3.9 and 3.16 to compute the right-hand side vector o7 € RM . Due to the
use of the FMM and the fact that DtN” is a diagonal matrix, the total computational cost of this step is
O(N).

(2) Use the CG method to solve — up to some tolerance — the linear system (3.14) involving A™™ and o7.
This yields a solution vector AJ77,. € RM. Once again, the cost of a single matrix vector product involving
A is O(N) thanks to the FMM. Due to Theorem 3.17, the total number of CG iterations required in
this step is independent of N, and therefore the total computational cost of this step is also O(N).

(3) Use the solution vector AZ5. . € RM to compute the vector v#PPr* € RM*+N This can be done by recalling
equation (3.15) and following the procedure outlined in Remark 3.13 with a few obvious modifications. The
computational cost of this step is O(N).

(4) v?PPr* is now the vector representation of some function v;PP"** € Wt=x(99) that is the required approx-

imation of the true solution v, to the Galerkin discretisation (2.4).

max

4. NUMERICAL EXPERIMENTS

Throughout this section, we assume the setting described in Sections 2 and 3. Our goal is now two-fold.
First, we wish to present numerical results supporting the conclusions of Theorems 3.12 and 3.17 concerning
the number of linear solver iterations required to obtain an approximate solutions up to a given and fixed
relative error. Second, we would like to provide numerical evidence that that the solution strategies presented
in Section 3 are indeed linear scaling in accuracy. Demonstrating this linear scaling behaviour is rather subtle
as we now explain.

The key complication is that the FMM, which is used to compute matrix-vector products involving the
solution matrix, is not exact (see, e.g., [24]) and introduces an approximation error as soon as one increases
the depth of the octree structure of the bounding box containing all multipole sources. This is because the
FMM uses an approximate so-called “far field” to compute interactions between multipole sources that belong
to well-separated leaves of the octree. Note that increasing the depth of the octree is required to maintain linear
scaling complexity for larger matrices, i.e., for matrices corresponding to systems with an increasing number N
of dielectric particles. In principle, the error introduced by the far-field computations can be made arbitrarily
small by increasing the maximal degree of spherical harmonics that are used in the multipole expansions of the
underlying kernel but increasing the expansion degree also increases the computational cost of each matrix-vector
product. There is thus a tradeoff between the computational cost and accuracy of the FMM.

Consequently, in Section 4.2, we first explore the interplay between the FMM error and discretisation error for
different values of the system parameters. Based on these results, we pick FMM system parameters that result
in a linear scaling in accuracy solution strategy such that the FMM error does not dominate the discretisation
€error.

4.1. Validation of theoretical results

Since standard FMM libraries typically consider point charges as input, we have used instead a modification
of the ScalFMM library (see [36] for an explanation of the modifications and [1,6,43] for details on ScalFMM).
The subsequent numerical simulations were performed with a single level FMM octree so as to avoid using the
approximate “far-field” and to perform all computations using the exact FMM “near-field” instead. Unless
stated otherwise, the discretisation parameter was fixed as £y = 5.
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FIGURE 1. (A) The basic geometric setting of our numerical experiments. The dielectric spheres
are arranged on a three dimensional, regular cubic lattice with edge length 2.5. (B) Linear Solver
iterations required to obtain an approximate solution with a given error tolerance as a function
of the number N of dielectric particles.

N-independence. Our first set of numerical experiments is designed to demonstrate that the number of linear
solver iterations required to obtain an approximation up to a given relative error to v,___ is independent of the
number N of dielectric particles.

We adopt the following geometric setting: We consider dielectric spheres of radius 1 and dielectric constant
k = 10 arranged on a regular cubic lattice of edge length 2.5. The spheres carry alternating unit positive and
negative charges, and the background medium is assumed to be vacuum so that ko = 1. An example of the
problem geometry is displayed in Figure 1. The number of spheres is increased simply by increasing the size of
the lattice.

Figure 1B displays the number of GMRES and CG iterations required to produce an approximation v;""*
of the true solution vy to the Galerkin discretisation (2.4) with a given relative error tolerance. The true
solution vy, was calculated by solving the linear system with tolerance 10713 and the relative error was
calculated exactly as in Theorems 3.12 and 3.17. Clearly, the numerical results agree with Theorems 3.12
and 3.17. Interestingly, for lower error tolerances, the number of CG iterations is smaller than the number of
GMRES iterations and the situation is reversed for higher tolerances.

max

Dependence on the dielectric constant ratio. Next, we explore the effects of different dielectric constant
ratios on the number of linear solver iterations required to obtain an approximate solution satisfying a given
error tolerance. The bounds obtained in Theorems 3.12 and 3.17 and Remark 3.14 indicate that

— If Kk > kg, then the number of iterations should grow at most as %ﬁ)‘” for increasing %’0‘“
— If kK < Ko, then the number of iterations should grow at most as \/—+2— for increasing mir’fﬁo.

The problem geometry is similar to the one from the previous test case. We consider a total of 125 identical
dielectric spheres of radius 1 with alternating positive and negative charge, arranged on a regular cubic lattice
of edge length 2.5. We set k9 = 1 and we allow the dielectric constant x of the spheres to vary from extremely
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FIGURE 2. (A) Linear Solver iterations required to obtain an approximate solution with a
given error tolerance as a function of the dielectric constant ratio. (B) Linear Solver iterations
required to obtain an approximate solution with a given error tolerance as a function of the
radii ratio.

high to extremely low. In all cases, the true solution vy _, was calculated by solving the linear system with
tolerance 10~ 13,

Figure 2A displays the number of GMRES and CG iterations required to produce an approximation to
the true solution satisfying a given error tolerance. For very large dielectric ratio %, the number of GMRES
iterations seems to grow logarithmically while the number of CG iterations grows at first but soon reaches a
plateau. On the other hand, for very small dielectric ratio %, the number of iterations in both cases quickly
reach a plateau. These results suggest that the bounds we have obtained in Theorems 3.12 and 3.17 may not

be sharp. Interestingly, we again observe that for low error tolerances, CG outperforms GMRES.

Dependence on the radii ratio. We now consider the dependence of the number of linear solver iterations on
the ratio of the maximum and minimum radius of the dielectric spherical particles. As mentioned in Remark 3.14,
we expect the number of iterations to grow at most as log (M

The geometric setting consists of 125 dielectric spheres with dielectric constant k = 10, carrying alternating
unit positive and negative charges, arranged on a regular cubic lattice of edge length 2.5. We set kg = 1 and
we further set the radii of half of the dielectric spheres to one. The radii of all other dielectric spheres is set to
r and we vary 7 from 107° to 1. As before, the true solution is calculated by setting the linear solver tolerance
to 10713,

Figure 2B displays the numerical results. In contrast to our theoretical results, the numerical simulations
suggest that the number of iterations at first grow logarithmically as the radii ratio % increases
but the growth soon stops and for sufficiently large radii ratio, the number of iterations remains constant. We
observe that for large radii ratios, GMRES significantly outperforms CG.

Dependence on the separation distance. Finally, we explore the dependence of the number of linear solver
iterations on the minimal inter-sphere separation distance. We recall from Remark 3.14 that we expect the
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FIGURE 3. (A) Linear Solver iterations required to obtain an approximate solution with a given
error tolerance as a function of the minimum inter-sphere separation distance. (B) Linear Solver
iterations required to obtain an approximate solution with error tolerance 10~% as a function
of linax for very small and moderate separation distances.

number of linear solver iterations to grow at most as c;% where ¢y, is the coercivity constant of the single layer
boundary operator. Moreover, we have shown in the first article Lemma 4.7 of [27] that ¢y = O(6) for small ¢
where § is the minimum inter-sphere separation distance.

We consider once again 125 identical dielectric spheres of radius 1 and dielectric constant k = 10 with
alternating positive and negative charge, arranged on a regular cubic lattice of edge length E. We assume the
background medium to be vacuum so that ko = 1 and we vary the edge length E from 2 + 10~% to 7. Thus, the
minimum separation varies from 10~ to 5. In all cases, the true solution v, was calculated by solving the
linear system with tolerance 10~'3. Figure 3A displays the numerical results.

There are two features of interest in these numerical results. First, we observe that for very small separation
distances, the number of CG iterations far exceeds the number of GMRES iterations. Second, we observe that
while the number of iterations in both cases grows as the separation distance decreases, the growth stops at
some point and the number of iterations plateaus. We conjecture that this is due to the fact that we use the
continuity constant C'z of the infinite-dimensional operator A to bound the largest eigenvalue of the solution
matrix, and functions which achieve (or approximately achieve) the upper bound C'; are not well-approximated

max

in the approximation space W(fm"“‘(aﬁ) for small £p,,x.

To test the above hypothesis, we plot in Figure 3B the number of linear solver iterations for different values
of lmax with edge lengths F = 24 107% and E = 3. The error tolerance was set to 10~%. We observe that the
number of iterations remains constant in the case F = 1 but increases in the case E = 10~4, which supports our
conjecture. Let us remark here that a possible strategy for the treatment of point singularities that arise due
to small separation distances between the particles has, for instance, been proposed in the contribution [19].
The authors in [19] derive analytical expressions for the induced potential both inside and outside a dielectric
spherical particle due to a general multipole source using the method of image charges and image potentials.
These analytical expressions are then combined with the classical method of moments to construct a hybrid
algorithm. Numerical experiments indicate that the hybrid method has significantly better accuracy than the
classical method of moments and also leads to solution matrices that do not suffer from ill-conditioning.
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4.2. FMM error and linear scaling solution strategy

We now explore the interplay between the discretisation error and the error introduced by the FMM. As
mentioned at the beginning of this section, given a system of N interacting particles, the FMM can compute
matrix-vector products using only O(N) operations but this comes at the cost of introducing an approximation
error. The approximation error typically grows as one increases the tree depth D, i.e., the number of levels in
the octree structure of the FMM bounding box because this usually results in more particle interactions being
computed using the less-accurate “far-field” computation of the FMM. Conversely, the approximation error
decreases if one increases the maximal degree P of spherical harmonics used in the multipole expansion of the
FMM kernel.

Consequently, the first goal of this section is to observe numerically how the FMM error compares with the
discretisation error for different values of D, P and /,,.x. Based on these results, we propose appropriate values
of D and P such that for an increasing number N of particles, an approximate solution to the Galerkin equa-
tion (2.4) can be computed in O(N) operations and such that the FMM approximation error does not dominate
the discretisation error. Finally, we present numerical results on the computation times of our algorithm for
increasing N which utilise the proposed values of P and D.

All subsequent numerical experiments involve the following geometric setting: We consider two types of
dielectric spheres arranged on a regular cubic lattice of edge length 7. The first type of dielectric spheres have
radius 3, dielectric constant 10 and carry unit negative charge, and the second type of dielectric spheres have
radius 2, dielectric constant 5 and carry unit positive charge. The background medium is assumed to be vacuum
so that kg = 1, and the number of spheres is increased simply by increasing the size of the lattice.

We consider two choices of the discretisation parameter, namely, ¢1,.x = 5 and fy,x = 10. We compute
so-called “pure discrete” solutions to the Galerkin discretisation (2.4) in each of the two cases for a different
number N of spherical particles. These solutions are all computed using a one-level FMM tree, which results
in the use of the exact “near-field” computation of the FMM. Additionally, the linear solver tolerance in each
case is set to 10719, Consequently, these pure discrete solutions can be assumed to have negligible FMM and
linear solver errors. Unfortunately, since we wish to use the exact “near-field” computations of the FMM, the
computational cost of obtaining each pure discrete solution grows as O(N?). This limits the total number of
spheres we consider to 1728.

Next, we compute “approximate” solutions for both values of ¢,,.x by repeating the above computations for
different values of the FMM parameters D and P whilst keeping all other parameters identical. In addition, we
compute the “reference” solution v to the BIE (2.1) by setting ¢1,.x = 20 and using a linear solver tolerance of
10713, Our goal now is to

— Compute the approzimation error due to the FMM by comparing the pure discrete solutions and the approx-
imate solutions computed above.

— Compute the discretisation error by comparing the pure discrete solutions and the reference solution
computed above.

Figures 4A and 4B display the relative FMM and discretisation errors (relative errors are calculated using
the ||| - ||| norm) in all cases. Although, it is difficult to form a definitive conclusion based on a limited data
set, we observe two broad trends:

— The FMM error far exceeds the discretisation error if NV is small and D is high. We deduce from this that
D should only be increased in proportion with N. Based on these results, the FMM error is minimised if a
2 level tree is used for 512 particles, which translates to exactly 8 particles per leaf. One possible strategy
for attaining this optimal particle per leaf ratio is to to start with a 1 level tree and increase D until there
are no more than 32 particles in each leaf. Notice that the choice of D is independent of ¢y, and depends
only on the number of particles N.

— As expected, the FMM error decreases as the expansion degree P is increased. Unfortunately, the compu-
tational cost of the FMM grows as O(P?) so the optimal strategy is to find the minimum P such that the
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FIGURE 4. (A) Relative FMM and discretisation errors as a function of the number N of
spherical particles in the case fa.x = 5. (B) Relative FMM and discretisation errors as a
function of the number N of spherical particles in the case £, = 10.

FMM error is strictly smaller than the discretisation error. Based on the results presented here, one possible
choice could be P = 2/,,,,. We remark that the choice of P is independent of the number of particles N and
depends only on the discretisation parameter £,,.

Equipped with this methodology for picking the FMM parameters P and D, we can now compute approximate
solutions to the Galerkin discretisation (2.4) for the two cases fiax = 5 and fpmax = 10, and an increasing number
N of spherical particles. Our goal is to demonstrate numerically that both the GMRES-based and CG-based
solution strategies are linear scaling in cost whilst having some reassurance that the FMM error does not
dominate the discretisation error for this specific geometric setting.

All numerical simulations were performed on a 2016 MacBook laptop with a 2.6 GHz Intel Core i7 processor
and 16 GB of 2133 MHz LPDDR3 memory. Additionally, we set the linear solver tolerance to 107% and 10~
in the case fiax = 5 and £ = 10 respectively. Our results are displayed in Figures 5A and 5B and indicate
excellent agreement with linear scaling behaviour. We see furthermore that the computation times for the
CG and GMRES-based approaches are almost identical. Of course, if the geometric setting of the numerical
simulations were to be changed, then one linear solver could potentially outperform the other in accordance
with the numerical study presented in Section 4.1.

5. CONCLUSION AND OUTLOOK

This article is the second in a series of two papers in which we present a detailed analysis of a boundary
integral equation (BIE) of the second kind that describes the interaction of N dielectric spherical particles
undergoing mutual polarisation. The aim of these two articles was to perform a full scalability analysis of the
Galerkin method used to solve this BIE and to establish that the method is linear scaling in accuracy, i.e., in
order to obtain an approximate solution with a fixed relative error, the computational cost of the algorithm
scales as O(N). In order to show that an N-body numerical method is linear scaling in accuracy, it is sufficient
to show that it is (a) N-error stable, i.e., for a fixed number of degrees of freedom per object the relative
error does not increase with N and (b) linear scaling in cost, i.e., for a fixed number of degrees of freedom
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FIGURE 5. (A) Computation times for the GMRES-based solution strategy as a function of the
number N of spherical particles. (B) Computation times for the CG-based solution strategy as
a function of the number N of spherical particles.

per object, only O(N) operations are needed to compute an approximate solution. Accordingly, the first article
[27] presented the numerical analysis of the Galerkin method and showed that the numerical method is N-error
stable by deriving N-independent convergence rates for the induced surface charge and total electrostatic energy.

The goal of the current article was to establish that the Galerkin method is also linear scaling in cost.
To this end, we presented a convergence analysis of GMRES for the linear system arising from the Galerkin
discretisation of the BIE and proved that under mild assumptions, there exists an upper bound — independent
of N — for the number of GMRES iterations required to obtain an approximate solution up to a given relative
error tolerance of the Galerkin discretisation. Combined with the use of the FMM to compute matrix-vector
products in O(N), this result establishes that the numerical method is linear scaling in cost. In view of the
main result of our earlier work [27], we can conclude the numerical method is indeed linear scaling in accuracy.

In addition to our main result, we also demonstrated how to “symmetrise” the underlying linear system and
subsequently proposed an equivalent, symmetric linear system that can be solved using the conjugate gradient
method (CG) rather than GMRES. A convergence analysis of this alternative approach showed that there exists
an upper bound — also independent of IV and qualitatively similar to the GMRES bound — for the number of CG
iterations required to to obtain an approximate solution to the Galerkin discretisation up to a given tolerance.
Finally, we presented a detailed numerical study with the goal of both supporting our theoretical results and
exploring the dependence of the error on various system parameters.

As regards extensions of this work, we note that the results we have presented thus far involve the induced
surface charge as the quantity of interest but many physical applications also require knowledge of the electro-
static forces between the dielectric particles. Similar errors estimates and a linear scaling solution strategy for
the electrostatic forces are therefore the subject of a forthcoming article by the authors [28]. Additionally, the
layer potentials and boundary integral operators we have considered thus far are all generated by the Laplace
operator. A promising direction of future research could be to explore if similar results on scalability and
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N-independent error estimates hold for boundary integral operators equations arising, for instance, in the study
of wave propagation in non-homogenous media or electrostatic interactions between dielectric particles in an
ionic solvent.
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