An integral equation formulation of the N-body dielectric spheres problem. Part I: numerical analysis
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S65-S102

In this article, we analyse an integral equation of the second kind that represents the solution of N interacting dielectric spherical particles undergoing mutual polarisation. A traditional analysis can not quantify the scaling of the stability constants- and thus the approximation error- with respect to the number N of involved dielectric spheres. We develop a new a priori error analysis that demonstrates N-independent stability of the continuous and discrete formulations of the integral equation. Consequently, we obtain convergence rates that are independent of N.

DOI : 10.1051/m2an/2020030
Classification : 65N12, 65N15, 65N35, 65R20
Keywords: Boundary integral equations, numerical analysis, error analysis, $$-body problem, polarisation
@article{M2AN_2021__55_S1_S65_0,
     author = {Hassan, Muhammad and Stamm, Benjamin},
     title = {An integral equation formulation of the {\protect\emph{N}-body} dielectric spheres problem. {Part} {I:} numerical analysis},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {S65--S102},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {Suppl\'ement},
     doi = {10.1051/m2an/2020030},
     mrnumber = {4221299},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020030/}
}
TY  - JOUR
AU  - Hassan, Muhammad
AU  - Stamm, Benjamin
TI  - An integral equation formulation of the N-body dielectric spheres problem. Part I: numerical analysis
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - S65
EP  - S102
VL  - 55
IS  - Supplément
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020030/
DO  - 10.1051/m2an/2020030
LA  - en
ID  - M2AN_2021__55_S1_S65_0
ER  - 
%0 Journal Article
%A Hassan, Muhammad
%A Stamm, Benjamin
%T An integral equation formulation of the N-body dielectric spheres problem. Part I: numerical analysis
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P S65-S102
%V 55
%N Supplément
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020030/
%R 10.1051/m2an/2020030
%G en
%F M2AN_2021__55_S1_S65_0
Hassan, Muhammad; Stamm, Benjamin. An integral equation formulation of the N-body dielectric spheres problem. Part I: numerical analysis. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S65-S102. doi: 10.1051/m2an/2020030

X. Antoine, C. Geuzaine and K. Ramdani, Computational methods for multiple scattering at high frequency with applications to periodic structure calculations. Wave Propag. Periodic Media Prog. Comput. Phys. 1 (2010) 73–107.

K. Atkinson, A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind. Society for Industrial and Applied Mathematics, Philadelphia, PA (1976). | MR | Zbl

K. Atkinson and W. Han, Numerical solution of Fredholm integral equations of the second kind. In: Theoretical Numerical Analysis: A Functional Analysis Framework. Springer, New York (2005) 447–522. | MR | Zbl

K. Barros, D. Sinkovits and E. Luijten, Efficient and accurate simulation of dynamic dielectric objects. J. Chem. Phys. 140 (2014) 064903.

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer-Verlag, New York (2011). | MR | Zbl

M. Brunner, J. Dobnikar, H.-H. Von Grünberg and C. Bechinger, Direct measurement of three-body interactions amongst charged colloids. Phys. Rev. Lett. 92 (2004) 078301.

X. Claeys, A single trace integral formulation of the second kind for acoustic scattering. In: ETH, Seminar of Applied Mathematics Research (2011).

X. Claeys and R. Hiptmair, Multi-trace boundary integral formulation for acoustic scattering by composite structures. Commun. Pure Appl. Math. 66 (2013) 1163–1201. | MR | Zbl

X. Claeys, R. Hiptmair, C. Jerez-Hanckes and S. Pintarelli, Novel multi-trace boundary integral equations for transmission boundary value problems. In: Unified Transform for Boundary Value Problems, chapter 7, edited by A. Fokas and B. Pelloni. (2014) 227–258. | MR

X. Claeys, R. Hiptmair and E. Spindler, A second-kind Galerkin boundary element method for scattering at composite objects. BIT Numer. Math. 55 (2015) 33–57. | MR | DOI

X. Claeys, R. Hiptmair and E. Spindler, Second kind boundary integral equation for multi-subdomain diffusion problems. Adv. Comput. Math. 43 (2017) 1075–1101. | MR | DOI

H. Clercx and G. Bossis, Many-body electrostatic interactions in electrorheological fluids. Phys. Rev. E 48 (1993) 2721. | DOI

M. Costabel, Some historical remarks on the positivity of boundary integral operators. In: Boundary Element Analysis. Springer (2007) 1–27. | MR | Zbl

M. Costabel and E. Stephan, A direct boundary integral equation method for transmission problems. J. Math. Anal. App. 106 (1985) 367–413. | MR | Zbl | DOI

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521–573. | MR | Zbl | DOI

J. Elschner, The double layer potential operator over polyhedral domains I: Solvability in weighted Sobolev spaces. Appl. Anal. 45 (1992) 117–134. | MR | Zbl | DOI

J. Elschner, The double-layer potential operator over polyhedral domains II: Spline Galerkin methods. Math. Methods Appl. Sci. 15 (1992) 23–37. | MR | Zbl | DOI

E. Fabes, M. Jodeit and N. Rivière, Potential techniques for boundary value problems on C 1 -domains. Acta Math. 141 (1978) 165–186. | MR | Zbl | DOI

G. Folland, Introduction to Partial Differential Equations. Princeton University Press (1995). | MR | Zbl

K. Freed, Perturbative many-body expansion for electrostatic energy and field for system of polarizable charged spherical ions in a dielectric medium. J. Chem. Phys. 141 (2014) 034115. | DOI

M. Ganesh and S. Hawkins, A high-order algorithm for multiple electromagnetic scattering in three dimensions. Numer. Algorithms 50 (2009) 469. | MR | Zbl | DOI

M. Ganesh and S. Hawkins, An efficient algorithm for simulating scattering by a large number of two dimensional particles. ANZIAM J. 52 (2011) 139–155. | MR | DOI

L. Greengard, The rapid evaluation of potential fields in particle systems. Ph.D. thesis, Yale University, New Haven, CT, USA (1987). | MR | Zbl

L. Greengard and V. Rokhlin, A fast algorithm for particle simulations. J. Comput. Phys. 73 (1987) 325–348. | MR | Zbl | DOI

B. Grzybowski, A. Winkleman, J. Wiles, Y. Brumer and G. Whitesides, Electrostatic self-assembly of macroscopic crystals using contact electrification. Nat. Mater. 2 (2003) 241–245. | DOI

W. Haibing and L. Jijun, On decomposition method for acoustic wave scattering by multiple obstacles. Acta Math. Sci. 33 (2013) 1–22. | MR | Zbl | DOI

M. Hassan and B. Stamm, An integral equation formulation of the N -body dielectric spheres problem. Part II: complexity analysis. Preprint arXiv:1911.07258 (2019).

R. Hockney and J. Eastwood, Computer Simulation Using Particles. CRC Press (1988). | Zbl | DOI

P. Houston and E. Süli, h p -adaptive discontinuous Galerkin finite element methods for first-order hyperbolic problems. SIAM J. Sci. Comput. 23 (2001) 1226–1252. | MR | Zbl | DOI

P. Houston, C. Schwab and E. Süli, Stabilized h p -finite element methods for first-order hyperbolic problems. SIAM J. Numer. Anal. 37 (2000) 1618–1643. | MR | Zbl

P. Houston, C. Schwab and E. Süli, Discontinuous h p -finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002) 2133–2163. | MR | Zbl

G. Hsiao and W. Wendland, Boundary Integral Equations. Springer-Verlag, Berlin Heidelberg (2008). | MR | Zbl

V. Lee, S. Waitukaitis, M. Miskin and H. Jaeger, Direct observation of particle interactions and clustering in charged granular streams. Nat. Phys. 11 (2015) 733.

E. Lindgren, A. Stace, E. Polack, Y. Maday, B. Stamm and E. Besley, An integral equation approach to calculate electrostatic interactions in many-body dielectric systems. J. Comput. Phys. 371 (2018) 712–731. | MR

E. Lindgren, B. Stamm, Y. Maday, E. Besley and A. Stace, Dynamic simulations of many-body electrostatic self-assembly. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 376 (2018) 20170143.

P. Linse, Electrostatics in the presence of spherical dielectric discontinuities. J. Chem. Phys. 128 (2008) 214505.

J. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Springer-Verlag, Berlin Heidelberg 1 (2012). | MR | Zbl

I. Lotan and T. Head-Gordon, An analytical electrostatic model for salt screened interactions between multiple proteins. J. Chem. Theory Comput. 2 (2006) 541–555.

V. Maz’Ya, Boundary integral equations. In: Analysis IV: Linear and Boundary Integral Equations. Springer Berlin Heidelberg, Berlin, Heidelberg (1991) 127–222. | Zbl

L. Mccarty, A. Winkleman and G. Whitesides, Electrostatic self-assembly of polystyrene microspheres by using chemically directed contact electrification. Angew. Chem. Int. Ed. 46 (2007) 206–209.

W. Mclean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press (2000). | MR | Zbl

R. Messina, Image charges in spherical geometry: Application to colloidal systems. J. Chem. Phys. 117 (2002) 11062–11074.

C. Müller, Foundations of the Mathematical Theory of Electromagnetic Waves. Springer-Verlag, Berlin Heidelberg (1969). | MR | Zbl

I. Newton, Philosophiæ Naturalis Principia Mathematica (1687). | Zbl | MR

H. Poincaré, Sur le problème des trois corps et les équations de la dynamique. Acta Math. 13 (1890) A3–A270. | JFM

J. Qin, J. Li, V. Lee, H. Jaeger, J. De Pablo and K. Freed, A theory of interactions between polarizable dielectric spheres. J. Colloid Interface Sci. 469 (2016) 237–241.

W. Qiu-Dong, The global solution of the n -body problem. Celestial Mech. Dyn. Astron. 50 (1990) 73–88. | MR | Zbl

V. Rokhlin, Solution of acoustic scattering problems by means of second kind integral equations. Wave Motion 5 (1983) 257–272. | MR | Zbl

S. Sauter and C. Schwab, Boundary Element Methods. Springer-Verlag, Berlin Heidelberg (2011). | MR | Zbl

E. Shevchenko, D. Talapin, N. Kotov, S. O’Brien and C. Murray, Structural diversity in binary nanoparticle superlattices. Nature 439 (2006) 55–59.

S. Soh, H. Liu, R. Cademartiri, H. J. Yoon and G. Whitesides, Charging of multiple interacting particles by contact electrification. J. Am. Chem. Soc. 136 (2014) 13348–13354.

O. Steinbach, W. Wendland and C. On, Neumann’s method for second-order elliptic systems in domains with non-smooth boundaries. J. Math. Anal. App. 262 (2001) 733–748. | MR | Zbl

K. Sundman, Mémoire sur le problème des trois corps. Acta Math. 36 (1913) 105–179. | MR | JFM

G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59 (1984) 572–611. | MR | Zbl

T. Von Petersdorff, Boundary integral equations for mixed Dirichlet, Neumann and transmission problems. Math. Methods Appl. Sci. 11 (1989) 185–213. | MR | Zbl

Z. Xu, Electrostatic interaction in the presence of dielectric interfaces and polarization-induced like-charge attraction. Phys. Rev. E 87 (2013) 013307.

Cité par Sources :