A reverse isoperimetric inequality for planar ( α , β ) -convex bodies
ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 62

In this paper, we study a reverse isoperimetric inequality for planar convex bodies whose radius of curvature is between two positive numbers 0 ≤ α ≤ β, called (α, β)-convex bodies. We show that among planar (α, β)-convex bodies of fixed perimeter, the extremal shape is a domain whose boundary is composed by two arcs of circles of radius α joined by two arcs of circles of radius β.

DOI : 10.1051/cocv/2022056
Keywords: Shape optimization, reverse isoperimetric inequality, Pontryagin maximum principle, convexity
@article{COCV_2022__28_1_A62_0,
     author = {Croce, Gisella and Fattah, Zakaria and Pisante, Giovanni},
     title = {A reverse isoperimetric inequality for planar $( \alpha , \beta )$-convex bodies},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {28},
     doi = {10.1051/cocv/2022056},
     mrnumber = {4487866},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2022056/}
}
TY  - JOUR
AU  - Croce, Gisella
AU  - Fattah, Zakaria
AU  - Pisante, Giovanni
TI  - A reverse isoperimetric inequality for planar $( \alpha , \beta )$-convex bodies
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2022
VL  - 28
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2022056/
DO  - 10.1051/cocv/2022056
LA  - en
ID  - COCV_2022__28_1_A62_0
ER  - 
%0 Journal Article
%A Croce, Gisella
%A Fattah, Zakaria
%A Pisante, Giovanni
%T A reverse isoperimetric inequality for planar $( \alpha , \beta )$-convex bodies
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2022
%V 28
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2022056/
%R 10.1051/cocv/2022056
%G en
%F COCV_2022__28_1_A62_0
Croce, Gisella; Fattah, Zakaria; Pisante, Giovanni. A reverse isoperimetric inequality for planar $( \alpha , \beta )$-convex bodies. ESAIM: Control, Optimisation and Calculus of Variations, Tome 28 (2022), article no. 62. doi: 10.1051/cocv/2022056

[1] A. Agrachev and Y. L. Sachkov, Control theory from the geometric viewpoint, volume 87 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin (2004). Control Theory and Optimization, II. | MR

[2] V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin, Optimal control. Contemporary Soviet Mathematics. Consultants Bureau, New York (1987). Translated from the Russian by V. M. Volosov. | MR | Zbl

[3] K. Ball, Volume ratios and a reverse isoperimetric inequality. J. London Math. Soc. 44 (1991) 351-359. | MR | Zbl | DOI

[4] T. Bayen, Optimisation de forme dans la classe des corps de largeur constante et des rotors. Theses, Université Pierre et Marie Curie - Paris VI (2007).

[5] T. Bayen, Analytical parameterization of rotors and proof of a Goldberg conjecture by optimal control theory. SIAM J. Control Optim. 47 (2009) 3007-3036. | MR | Zbl | DOI

[6] T. Bayen and J.-B. Hiriart-Urruty, Objets convexes de largeur constante (en 2D) ou d’épaisseur constante (en 3D): du neuf avec du vieux. Ann. Sci. Math. Québec 36 (2013) 17-42. | Zbl | MR

[7] S. Blatt, A reverse isoperimetric inequality and its application to the gradient flow of the Helfrich functional (2020). [math.AP] | arXiv | Zbl

[8] A. Borisenko and K. Drach, Isoperimetric inequality for curves with curvature bounded below. Math. Notes 95 (2014) 590-598. | MR | Zbl | DOI

[9] R. Chernov, K. Drach and K. Tatarko, A sausage body is a unique solution for a reverse isoperimetric problem. Adv. Math. 353 (2019) 431-445. | MR | Zbl | DOI

[10] B. V. Dekster, On reduced convex bodies. Israel J. Math. 56 (1986) 247-256. | MR | Zbl | DOI

[11] K. Drach, On a solution of the reverse Dido problem in a class of convex surfaces of revolution. Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki 4 (2016) 7-12. | MR | Zbl

[12] L. Esposito, N. Fusco and C. Trombetti, A quantitative version of the isoperimetric inequality: the anisotropic case. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4 (2005) 619-651. | MR | Zbl | Numdam

[13] I. Ftouhi and J. Lamboley, Blaschke-Santalé diagram for volume, perimeter, and first Dirichlet eigenvalue. SIAM J. Math. Anal. 53 (2021) 1670-1710. | MR | Zbl | DOI

[14] A. Gard, Reverse isoperimetric inequalities in R3. ProQuest LLC, Ann Arbor, MI (2012). Ph.D. thesis, The Ohio State University. | MR

[15] P. M. Gruber and J. M. Wills, editors, Handbook of convex geometry. Vol. A, B. North-Holland Publishing Co., Amsterdam (1993). | Zbl

[16] L. Hörmander, Notions of convexity, Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA (2007). Reprint of the 1994 edition. | MR | Zbl

[17] R. Howard, Convex bodies of constant width and constant brightness. Adv. Math. 204 (2006) 241-261. | MR | Zbl | DOI

[18] R. Howard and A. Treibergs, A reverse isoperimetric inequality, stability and extremal theorems for plane curves with bounded curvature. Rocky Mountain J. Math. 25 (1995) 635-684. | MR | Zbl | DOI

[19] J.-M. Morvan, Generalized curvatures, volume 2 of Geometry and Computing. Springer-Verlag, Berlin (2008). | MR | Zbl

[20] G. Paoli, A reverse quantitative isoperimetric type inequality for the Dirichlet Laplacian (2021). [math.AP] | arXiv | MR | Zbl

[21] L. A. Santaló, Integral geometry and geometric probability. Cambridge Mathematical Library. Cambridge University Press, Cambridge, second edition (2004). With a foreword by Mark Kac. | MR | Zbl

[22] R. Schneider, Convex bodies: the Brunn-Minkowski theory, volume 151 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, expanded edition (2014). | MR

[23] E. Trélat, Singular trajectories and subanalyticity in optimal control and Hamilton-Jacobi theory. Rend. Semin. Mat. Univ. Politec. Torino 64 (2006) 97-109. | MR | Zbl

[24] F. Valentine, Convex sets. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York-Toronto-London (1964). | MR | Zbl

[25] Z. Zhang, Inequalities for curvature integrals in Euclidean plane. J. Inequalit. Appl. 2019 (2019) 1-12. | MR | Zbl

Cité par Sources :