We state and prove a stability result for the anisotropic version of the isoperimetric inequality. Namely if is a set with small anisotropic isoperimetric deficit, then is “close” to the Wulff shape set.
Esposito, Luca 1 ; Fusco, Nicola 2 ; Trombetti, Cristina 2
@article{ASNSP_2005_5_4_4_619_0,
author = {Esposito, Luca and Fusco, Nicola and Trombetti, Cristina},
title = {A quantitative version of the isoperimetric inequality : the anisotropic case},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {619--651},
year = {2005},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 4},
number = {4},
mrnumber = {2207737},
zbl = {1170.52300},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2005_5_4_4_619_0/}
}
TY - JOUR AU - Esposito, Luca AU - Fusco, Nicola AU - Trombetti, Cristina TI - A quantitative version of the isoperimetric inequality : the anisotropic case JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2005 SP - 619 EP - 651 VL - 4 IS - 4 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2005_5_4_4_619_0/ LA - en ID - ASNSP_2005_5_4_4_619_0 ER -
%0 Journal Article %A Esposito, Luca %A Fusco, Nicola %A Trombetti, Cristina %T A quantitative version of the isoperimetric inequality : the anisotropic case %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2005 %P 619-651 %V 4 %N 4 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2005_5_4_4_619_0/ %G en %F ASNSP_2005_5_4_4_619_0
Esposito, Luca; Fusco, Nicola; Trombetti, Cristina. A quantitative version of the isoperimetric inequality : the anisotropic case. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 4, pp. 619-651. https://www.numdam.org/item/ASNSP_2005_5_4_4_619_0/
[1] and , A notion of total variation depending on a metric with discontinuous coefficients, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), 91-133. | Zbl | MR | Numdam
[2] , and , “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford University Press, 2000. | Zbl | MR
[3] , Über die isoperimetrische Defizit ebener Figuren, Math. Ann. 91 (1924), 252-268. | MR | JFM
[4] and , “Geometric Inequalities”, Grund. Math. Wissen., Springer, 1988. | Zbl | MR
[5] , and , Minimum problems over sets of concave functions and related questions, Math. Nachr. 173 (1995), 71-89. | Zbl | MR
[6] , and , The perimeter inequality for Steiner symmatrization: cases of equality, Ann. of Math. 162 (2005), 525-555. | Zbl | MR
[7] and , Wulff theorem and best constant in Sobolev inequality, J. Math. Pures Appl. 71 (1992), 97-118. | Zbl | MR
[8] , Sulla proprietà isoperimetrica dell'ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat. Sez. I (8) 5 (1958), 33-44. | Zbl | MR
[9] , Über einen geometrischen Satz von Wulff für die Gleichgewichtsform von Kristallen, Z. Krist. 105 (1944), 304-314. | Zbl | MR
[10] , Metric entropy of some classes of sets with differentiable boundaries, J. Approx. Theory 10 (1974), 227-236. | Zbl | MR
[11] , The Wulff theorem revisited, Proc. Roy. Soc. London 432 (1991), 125-145. | Zbl | MR
[12] and , A uniqueness proof for the Wulff theorem, Proc. Roy. Soc. Edinburgh 119A (1991), 125-136. | Zbl | MR
[13] , Stability in the isoperimetric problem for convex or nearly spherical domains in , Trans. Amer. Math. Soc. 314 (1989), 619-638. | Zbl | MR
[14] , Aspects of Approximation of Convex Bodies, In: “Handbook of Convex Geometry”, P. M. Gruber and J. M. Wills (eds.), Elsevier, 1993, 319-345. | Zbl | MR
[15] , A quantitative isoperimetric inequality in -dimensional space, J. Reine Angew. Math. 428 (1992), 161-176. | Zbl | MR
[16] , and , On asymmetry and capacity, J. Anal. Math. 56 (1991), 87-123. | Zbl | MR
[17] , On the problem of well-posedness for the Radon transform, In: “Mathematical Aspects of Computerized Tomography”, Proc. Oberwolfach 1980, Lect. Notes Medic. Inform., Vol. 8, 1981, 36-44. | Zbl | MR
[18] , Some questions of stability in the reconstruction of plane convex bodies from projections, Inverse Problems 1 (1985), 87-97. | Zbl | MR
[19] , Existence and structure of solutions to a class of nonelliptic variational problems, Sympos. Math. 14 (1974), 499-508. | Zbl | MR
[20] , Unique structure of solutions to a class of nonelliptic variational problems, Proc. Sympos. Pure Math. 27 (1975), 419-427. | Zbl | MR
[21] , Crystalline variational problems, Bull. Amer. Math. Soc. 84 (1978), 568-588. | Zbl | MR
[22] , Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Kristallfläschen, Z. Krist. 34 (1901), 449-530.





