The inverse of the divergence operator on perforated domains with applications to homogenization problems for the compressible Navier–Stokes system
ESAIM: Control, Optimisation and Calculus of Variations, Volume 23 (2017) no. 3, pp. 851-868.

We study the inverse of the divergence operator on a domain ΩR 3 perforated by a system of tiny holes. We show that such inverse can be constructed on the Lebesgue space L p (Ω) for any 1<p<3, with a norm independent of perforation, provided the holes are suitably small and their mutual distance suitably large. Applications are given to problems arising in homogenization of steady compressible fluid flows.

Received:
DOI: 10.1051/cocv/2016016
Classification: 35B27, 35Q30, 35Q35
Mots-clés : Perforated domains, Bogovskii type operators, homogenization, compressible Navier–Stokes system
Diening, Lars 1; Feireisl, Eduard 2; Lu, Yong 3

1 Institute of Mathematics, Universität Osnabrück, Albrechtstr. 28a, 49076 Osnabrück, Germany
2 Institute of Mathematics of the Academy of Sciences of the Czech Republic, Zitná 25, 115 67 Praha 1, Czech Republic
3 Mathematical Institute, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Praha, Czech Republic
@article{COCV_2017__23_3_851_0,
     author = {Diening, Lars and Feireisl, Eduard and Lu, Yong},
     title = {The inverse of the divergence operator on perforated domains with applications to homogenization problems for the compressible {Navier{\textendash}Stokes} system},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {851--868},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {3},
     year = {2017},
     doi = {10.1051/cocv/2016016},
     mrnumber = {3660451},
     zbl = {1375.35026},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2016016/}
}
TY  - JOUR
AU  - Diening, Lars
AU  - Feireisl, Eduard
AU  - Lu, Yong
TI  - The inverse of the divergence operator on perforated domains with applications to homogenization problems for the compressible Navier–Stokes system
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 851
EP  - 868
VL  - 23
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2016016/
DO  - 10.1051/cocv/2016016
LA  - en
ID  - COCV_2017__23_3_851_0
ER  - 
%0 Journal Article
%A Diening, Lars
%A Feireisl, Eduard
%A Lu, Yong
%T The inverse of the divergence operator on perforated domains with applications to homogenization problems for the compressible Navier–Stokes system
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 851-868
%V 23
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2016016/
%R 10.1051/cocv/2016016
%G en
%F COCV_2017__23_3_851_0
Diening, Lars; Feireisl, Eduard; Lu, Yong. The inverse of the divergence operator on perforated domains with applications to homogenization problems for the compressible Navier–Stokes system. ESAIM: Control, Optimisation and Calculus of Variations, Volume 23 (2017) no. 3, pp. 851-868. doi : 10.1051/cocv/2016016. https://www.numdam.org/articles/10.1051/cocv/2016016/

G. Acosta, R.G. Durán and M.A. Muschietti, Solutions of the divergence operator on John domains. Adv. Math. 206 (2006) 373–401. | DOI | MR | Zbl

G. Allaire, Homogenization of the Stokes flow in a connected porous medium. Asymptot. Anal. 2 (1989) 203–222. | MR | Zbl

G. Allaire, Homogenization of the Navier−Stokes equations in open sets perforated with tiny holes. I. Abstract framework, a volume distribution of holes. Arch. Ration. Mech. Anal. 113 (1990) 209–259. | DOI | MR | Zbl

G. Allaire, Homogenization of the Navier−Stokes equations in open sets perforated with tiny holes. II. Noncritical sizes of the holes for a volume distribution and a surface distribution of holes. Arch. Ration. Mech. Anal. 113 (1990) 261–298. | DOI | MR | Zbl

M.E. Bogovskii, Solution of some vector analysis problems connected with operators div and grad. Tr. Sem. S.L. Soboleva 80 (1980) 5–40. In Russian. | MR | Zbl

J. Březina and A. Novotný, On weak solutions of steady Navier−Stokes equations for monatomic gas. Comment. Math. Univ. Carolin. 49 (2008) 611–632. | MR | Zbl

L. Diening, M.Rzůžička and K. Schumacher, A decomposition technique for John domains. Ann. Acad. Sci. Fenn. 35 (2010) 87–114. | DOI | MR | Zbl

R.J. Diperna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989) 511–547. | DOI | MR | Zbl

E. Feireisl and Y. Lu, Homogenization of stationary Navier−Stokes equations in domains with tiny holes. J. Math. Fluid Mech. 17 (2015) 381–392. | DOI | MR | Zbl

E. Feireisl, A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier−Stokes equations of compressible isentropic fluids. J. Math. Fluid Mech. 3 (2001) 358–392. | DOI | MR | Zbl

E. Feireisl and A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids. Birkhäuser Verlag, Basel (2009). | MR | Zbl

E. Feireisl, A. Novotný and T. Takahashi, Homogenization and singular limits for the complete Navier−Stokes−Fourier system. J. Math. Pures Appl. 94 (2010) 33–57. | DOI | MR | Zbl

E. Feireisl, Y. Namlyeyeva and Š. Nečasová, Homogenization of the evolutionary Navier−-Stokes system. Manusc. Math. 149 (2016) 251–274. | DOI | MR | Zbl

J. Frehse, M. Steinhauer and W. Weigant, The Dirichlet problem for steady viscous compressible flow in three dimensions. Journal de Mathématiques Pures et Appliquées 97 (2012) 85–97. | DOI | MR | Zbl

G.P. Galdi, An Introduction to the Mathematical Theory of the Navier−Stokes Equations: Steady-State Problems. Springer Science and Business Media (2011). | MR | Zbl

P.-L. Lions,Mathematical topics in fluid dynamics, Compressible models. Oxford Science Publication, Oxford (1998). Vol. 2. | MR | Zbl

N. Masmoudi, Homogenization of the compressible Navier−Stokes equations in a porous medium. ESAIM: COCV 8 (2002) 885–906. | Numdam | MR | Zbl

A. Mikelić, Homogenization of nonstationary Navier−Stokes equations in a domain with a grained boundary. Ann. Mat. Pura Appl. 158 (1991) 167–179. | DOI | MR | Zbl

A. Novotný and I. Straskraba,Introduction to the mathematical theory of compressible flow. Oxford University Press, Oxford (2004). | MR | Zbl

P. Plotnikov and J. Sokolowski, Compressible Navier−Stokes equations. Vol. 73 of Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series)]. Birkhäuser/Springer Basel AG, Basel (2012). Theory and shape optimization. | MR | Zbl

P. Plotnikov and W. Weigant, Steady 3D viscous compressible flows with adiabatic exponent γ(1,). J. Math. Pures Appl. 104 (2015) 58–82. | DOI | MR | Zbl

E. Sánchez-Palencia, Non homogeneous media and vibration theory. Vol. 127 of Lect. Notes Phys. Springer-Verlag (1980). | MR | Zbl

L. Tartar, Incompressible fluid flow in a porous medium: convergence of the homogenization process, in Nonhomogeneous media and vibration theory, edited by E. Sánchez-Palencia (1980) 368–377.

Cited by Sources: