We study the homogenization of the compressible Navier-Stokes system in a periodic porous medium (of period ) with Dirichlet boundary conditions. At the limit, we recover different systems depending on the scaling we take. In particular, we rigorously derive the so-called “porous medium equation”.
Keywords: compressible Navier-Stokes, homogenization, porous medium equation
@article{COCV_2002__8__885_0,
author = {Masmoudi, Nader},
title = {Homogenization of the compressible {Navier-Stokes} equations in a porous medium},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {885--906},
year = {2002},
publisher = {EDP Sciences},
volume = {8},
doi = {10.1051/cocv:2002053},
zbl = {1071.76047},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2002053/}
}
TY - JOUR AU - Masmoudi, Nader TI - Homogenization of the compressible Navier-Stokes equations in a porous medium JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 885 EP - 906 VL - 8 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2002053/ DO - 10.1051/cocv:2002053 LA - en ID - COCV_2002__8__885_0 ER -
%0 Journal Article %A Masmoudi, Nader %T Homogenization of the compressible Navier-Stokes equations in a porous medium %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 885-906 %V 8 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2002053/ %R 10.1051/cocv:2002053 %G en %F COCV_2002__8__885_0
Masmoudi, Nader. Homogenization of the compressible Navier-Stokes equations in a porous medium. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 885-906. doi: 10.1051/cocv:2002053
[1] , Homogenization of the Stokes flow in a connected porous medium. Asymptot. Anal. 2 (1989) 203-222. | Zbl | MR
[2] , Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482-1518. | Zbl | MR
[3] , Homogenization of the unsteady Stokes equations in porous media, in Progress in partial differential equations: Calculus of variations, applications, Pont-à-Mousson, 1991. Longman Sci. Tech., Harlow (1992) 109-123. | Zbl | MR
[4] , and, Asymptotic analysis for periodic structures. North-Holland Publishing Co., Amsterdam (1978). | Zbl | MR
[5] , Solutions of some problems of vector analysis, associated with the operators and , in Theory of cubature formulas and the application of functional analysis to problems of mathematical physics. Akad. Nauk SSSR Sibirsk. Otdel. Inst. Mat., Novosibirsk (1980) 5-40, 149. | MR
[6] , Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova 31 (1961) 308-340. | Zbl | MR | Numdam
[7] , Les fontaines publiques de la ville de Dijon. Dalmont Paris (1856).
[8] , Two problems in homogenization of porous media, in Proc. of the Second International Seminar on Geometry, Continua and Microstructure, Getafe, 1998, Vol. 14 (1999) 141-155. | Zbl | MR
[9] , On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable. Comment. Math. Univ. Carolin. 42 (2001) 83-98. | Zbl
[10] , An introduction to the mathematical theory of the Navier-Stokes equations, Vol. I. Springer-Verlag, New York (1994). Linearized steady problems. | Zbl
[11] , Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod (1969). | Zbl | MR
[12] , Some methods in the mathematical analysis of systems and their control. Kexue Chubanshe (Science Press), Beijing (1981). | Zbl | MR
[13] , Mathematical topics in fluid mechanics, Vol. 1. The Clarendon Press Oxford University Press, New York (1996). Incompressible models, Oxford Science Publications. | Zbl | MR
[14] , Mathematical topics in fluid mechanics, Vol. 2. The Clarendon Press Oxford University Press, New York (1998). Compressible models, Oxford Science Publications. | Zbl | MR
[15] and, Darcy's law for slow viscous flow past a stationary array of bubbles. Proc. Roy. Soc. Edinburgh Sect. A 114 (1990) 71-79. | Zbl
[16] (in preparation).
[17] , Homogenization of nonstationary Navier-Stokes equations in a domain with a grained boundary. Ann. Mat. Pura Appl. (4) 158 (1991) 167-179. | Zbl
[18] , A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608-623. | Zbl | MR
[19] , Asymptotic analysis for a stiff variational problem arising in mechanics. SIAM J. Math. Anal. 21 (1990) 1394-1414. | Zbl | MR
[20] , Nonhomogeneous media and vibration theory. Springer-Verlag, Berlin (1980). | Zbl
[21] , Incompressible fluid flow in a porous medium: convergence of the homogenization process, in Nonhomogeneous media and vibration theory, edited by E. Sánchez-Palencia (1980) 368-377.
[22] , Navier-Stokes equations and nonlinear functional analysis. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, Second Edition (1995). | Zbl
Cité par Sources :





