Article
A local model for the trianguline variety and applications
Publications Mathématiques de l'IHÉS, Tome 130 (2019), pp. 299-412

We describe the completed local rings of the trianguline variety at certain points of integral weights in terms of completed local rings of algebraic varieties related to Grothendieck’s simultaneous resolution of singularities. We derive several local consequences at these points for the trianguline variety: local irreducibility, description of all local companion points in the crystalline case, combinatorial description of the completed local rings of the fiber over the weight map, etc. Combined with the patched Hecke eigenvariety (under the usual Taylor-Wiles assumptions), these results in turn have several global consequences: classicality of crystalline strictly dominant points on global Hecke eigenvarieties, existence of all expected companion constituents in the completed cohomology, existence of singularities on global Hecke eigenvarieties.

DOI : 10.1007/s10240-019-00111-y

Breuil, Christophe 1 ; Hellmann, Eugen 1 ; Schraen, Benjamin 1

1
@article{PMIHES_2019__130__299_0,
     author = {Breuil, Christophe and Hellmann, Eugen and Schraen, Benjamin},
     title = {A local model for the trianguline variety and applications},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {299--412},
     year = {2019},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {130},
     doi = {10.1007/s10240-019-00111-y},
     mrnumber = {4028517},
     zbl = {1454.14120},
     language = {en},
     url = {https://www.numdam.org/articles/10.1007/s10240-019-00111-y/}
}
TY  - JOUR
AU  - Breuil, Christophe
AU  - Hellmann, Eugen
AU  - Schraen, Benjamin
TI  - A local model for the trianguline variety and applications
JO  - Publications Mathématiques de l'IHÉS
PY  - 2019
SP  - 299
EP  - 412
VL  - 130
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://www.numdam.org/articles/10.1007/s10240-019-00111-y/
DO  - 10.1007/s10240-019-00111-y
LA  - en
ID  - PMIHES_2019__130__299_0
ER  - 
%0 Journal Article
%A Breuil, Christophe
%A Hellmann, Eugen
%A Schraen, Benjamin
%T A local model for the trianguline variety and applications
%J Publications Mathématiques de l'IHÉS
%D 2019
%P 299-412
%V 130
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://www.numdam.org/articles/10.1007/s10240-019-00111-y/
%R 10.1007/s10240-019-00111-y
%G en
%F PMIHES_2019__130__299_0
Breuil, Christophe; Hellmann, Eugen; Schraen, Benjamin. A local model for the trianguline variety and applications. Publications Mathématiques de l'IHÉS, Tome 130 (2019), pp. 299-412. doi: 10.1007/s10240-019-00111-y

[1.] Beilinson, A.; Bernstein, J. Localisation de 𝔤-modules, C. R. Acad. Sci. Paris, Volume 292 (1981), pp. 15-18 | MR | Zbl

[2.] Bellaïche, J.; Chenevier, G. Families of Galois representations and Selmer groups, Astérisque, Volume 324 (2009), p. xii+314 | MR | Zbl | Numdam

[3.] Bellaïche, J. Critical p-adic L -functions, Invent. Math., Volume 189 (2012), pp. 1-60 | MR | Zbl | DOI

[4.] Bergdall, J. Ordinary modular forms and companion points on the eigencurve, J. Number Theory, Volume 134 (2014), pp. 226-239 | MR | Zbl | DOI

[5.] Bergdall, J. Paraboline variation over p-adic families of (φ,Γ)-modules, Compos. Math., Volume 153 (2017), pp. 132-174 | MR | Zbl | DOI

[6.] Bergdall, J. Smoothness on definite unitary eigenvarieties at critical points, J. Reine Angew. Math. (2018) | MR | Zbl | DOI

[7.] Berger, L. Représentations p-adiques et équations différentielles, Invent. Math., Volume 148 (2002), pp. 219-284 | MR | Zbl

[8.] Berger, L. Équation différentielles p-adiques et (φ,N)-modules filtrés, Astérisque, Volume 319 (2008), pp. 13-38 | Zbl | MR | Numdam

[9.] Berger, L. Constructions de (φ,Γ)-modules: représentations p-adiques et B-paires, Algebra Number Theory, Volume 2 (2008), pp. 91-120 | MR | Zbl | DOI

[10.] I. N. Bernstein, I. M. Gelfand and S. I. Gelfand, Differential operators on the base affine space and a study of 𝔤-modules, Lie groups and their representations, 243 (1975). | Zbl

[11.] Bernstein, I. N.; Zelevinsky, A. N. Induced representations of reductive 𝔭-adic groups. I, Ann. Sci. Éc. Norm. Supér., Volume 10 (1977), pp. 441-472 | MR | Zbl | Numdam | DOI

[12.] Bezrukavnikov, R.; Riche, S. Affine braid group actions on derived categories of Springer resolutions, Ann. Sci. Éc. Norm. Supér., Volume 45 (2012), pp. 535-599 | MR | Zbl | Numdam | DOI

[13.] Billey, S.; Lakshmibai, V. Singular Loci of Schubert Varieties, 182, 2000 | Zbl | MR | DOI

[14.] Bosch, S.; Lütkebohmert, W. Formal and rigid geometry II. Flattening techniques, Math. Ann., Volume 296 (1993), pp. 403-429 | MR | Zbl | DOI

[15.] Breuil, C. Vers le socle localement analytique pour GL n I, Ann. Inst. Fourier, Volume 66 (2016), pp. 633-685 | MR | Zbl | Numdam | DOI

[16.] Breuil, C. Vers le socle localement analytique pour GL n II, Math. Ann., Volume 361 (2015), pp. 741-785 | MR | Zbl | DOI

[17.] Breuil, C.; Emerton, M. Représentations ordinaires de GL 2 (𝐐 p ) et compatibilité local-global, Astérisque, Volume 331 (2010), pp. 255-315 | Zbl | Numdam | MR

[18.] Breuil, C.; Mézard, A. Multiplicités modulaires et représentations de GL 2 (𝒵 p ) et de Gal (𝐐 p ¯/𝐐 p ) en =p, Duke Math. J., Volume 115 (2002), pp. 205-298 | MR | Zbl

[19.] Breuil, C.; Hellmann, E.; Schraen, B. Une interprétation modulaire de la variété trianguline, Math. Ann., Volume 367 (2017), pp. 1587-1645 | MR | Zbl | DOI

[20.] Breuil, C.; Hellmann, E.; Schraen, B. Smoothness and classicality on eigenvarieties, Invent. Math., Volume 209 (2017), pp. 197-274 | MR | Zbl | DOI

[21.] Brylinski, J. L.; Kashiwara, M. Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math., Volume 64 (1981), pp. 387-410 | MR | Zbl | DOI

[22.] Caraiani, A. Monodromy and local-global compatibility for =p, Algebra Number Theory, Volume 8 (2014), pp. 1597-1646 | MR | Zbl | DOI

[23.] Caraiani, A.; Emerton, M.; Gee, T.; Geraghty, D.; Paškūnas, V.; Shin, S. W. Patching and the p-adic local Langlands correspondence, Camb. J. Math., Volume 4 (2016), pp. 197-287 | MR | Zbl | DOI

[24.] Chenevier, G. On the infinite fern of Galois representations of unitary type, Ann. Sci. Éc. Norm. Supér., Volume 44 (2011), pp. 963-1019 | MR | Zbl | Numdam | DOI

[25.] Chenevier, G. Sur la densité des representations cristallines de Gal (𝐐 p ¯/𝐐 p ), Math. Ann., Volume 355 (2015), pp. 1469-1525 | MR | Zbl | DOI

[26.] Chenevier, G. The p-adic analytic space of pseudocharacters of a profinite group and pseudorepresentations over arbitrary rings, Lond. Math. Soc. Lect. Note Ser., Volume 414 (2014), pp. 221-285 | MR | Zbl

[27.] Chriss, N.; Ginzburg, V. Representation Theory and Complex Geometry, Modern, 1997 | Zbl | MR

[28.] Ding, Y. Formes modulaires p -adiques sur les courbes de Shimura unitaires et compatibilité local-global, 155, 2017 | Zbl | MR

[29.] Y. Ding, Some results on the locally analytic socle for GL n (𝐐 p ), Int. Math. Res. Not., 287 (2018). | MR

[30.] Ding, Y. Companion points and locally analytic socle for GL 2 (L), Isr. J. Math., Volume 231 (2019), pp. 47-122 | MR | Zbl | DOI

[31.] Eisenbud, D. Commutative Algebra with a View Toward Algebraic Geometry, 150, 1995 | Zbl | MR

[32.] Emerton, M. Jacquet modules of locally analytic representations of p-adic reductive groups I. Construction and first properties, Ann. Sci. Éc. Norm. Supér., Volume 39 (2006), pp. 775-839 | MR | Zbl | DOI

[33.] M. Emerton, Jacquet modules of locally analytic representations of p-adic reductive groups II. The relation to parabolic induction, J. Inst. Math. Jussieu, to appear

[34.] Emerton, M. Locally Analytic Vectors in Representations of Locally p -Adic Analytic Groups, 248, 2017 | Zbl | MR

[35.] Emerton, M.; Gee, T. A geometric perspective on the Breuil-Mézard conjecture, J. Inst. Math. Jussieu, Volume 13 (2014), pp. 183-223 | MR | Zbl | DOI

[36.] Fontaine, J.-M. Représentations -adiques potentiellement semi-stables, Astérisque, Volume 223 (1994), pp. 321-347 | Zbl | Numdam | MR

[37.] Fontaine, J.-M. Arithmétique des représentations galoisiennes p-adiques, Astérisque, Volume 295 (2004), pp. 1-115 | Zbl | MR | Numdam

[38.] Gee, T.; Kisin, M. The Breuil-Mézard conjecture for potentially Barsotti-Tate representations, Forum Math., Pi, Volume 2 (2014) | Zbl | MR

[39.] Ginsburg, V. 𝔊-modules, Springer’s representations and bivariant Chern classes, Adv. Math., Volume 61 (1986), pp. 1-48 | MR | Zbl | DOI

[40.] Grothendieck, A.; Dieudonné, J. Éléments de géométrie algébrique IV Étude locale des schémas et des morphismes de schémas (première partie), Publ. Math. IHÉS, Volume 20 (1964), pp. 5-259 | MR | Numdam | Zbl | DOI

[41.] Grothendieck, A.; Dieudonné, J. Éléments de géométrie algébrique IV Étude locale des schémas et des morphismes de schémas (seconde partie), Publ. Math. IHÉS, Volume 24 (1965), pp. 5-231 | Zbl | MR | Numdam

[42.] Grothendieck, A.; Dieudonné, J. Éléments de géométrie algébrique IV Étude locale des schémas et des morphismes de schémas (troisième partie), Publ. Math. IHÉS, Volume 28 (1966), pp. 5-255 | MR | Zbl | Numdam

[43.] Hartshorne, R. Algebraic Geometry, 52, 1977 | Zbl | MR | DOI

[44.] Hotta, R.; Takeuchi, K.; Tanisaki, T. D -Modules, Perverse Sheaves, and Representation Theory, 236, 2008 | Zbl | MR | DOI

[45.] Humphreys, J. Representations of Semisimple Lie Algebras in the BGG Category 𝒪 , 94, 2008 | Zbl | MR

[46.] Jantzen, J. C. Representations of Algebraic Groups, 107, 2007 | Zbl | MR

[47.] Kashiwara, M.; Saito, Y. Geometric construction of crystal bases, Duke Math. J., Volume 89 (1997), pp. 9-36 | MR | Zbl | DOI

[48.] Kedlaya, K. Slope filtrations for relative Frobenius, Astérisque, Volume 319 (2008), pp. 259-301 | MR | Zbl | Numdam

[49.] Kedlaya, K.; Pottharst, J.; Xiao, L. Cohomology of arithmetic families of (φ,Γ)-modules, J. Am. Math. Soc., Volume 27 (2014), pp. 1043-1115 | MR | Zbl | DOI

[50.] Kiehl, R.; Weissauer, R. Weil Conjectures, Perverse Sheaves and -adic Fourier Transform, 42, 2001 | Zbl | MR

[51.] Kisin, M. Overconvergent modular forms and the Fontaine-Mazur conjecture, Invent. Math., Volume 153 (2003), pp. 373-454 | MR | Zbl | DOI

[52.] Kisin, M. Potentially semi-stable deformation rings, J. Am. Math. Soc., Volume 21 (2008), pp. 513-546 | MR | Zbl | DOI

[53.] Kisin, M. Moduli of finite flat group schemes, and modularity, Ann. Math., Volume 170 (2009), pp. 1085-1180 | MR | Zbl | DOI

[54.] R. Liu, Cohomology and duality for (φ,Γ)-modules over the Robba ring, Int. Math. Res. Not., 32 (2008). | MR | Zbl

[55.] Liu, R. Triangulation of refined families, Comment. Math. Helv., Volume 90 (2015), pp. 831-904 | MR | Zbl | DOI

[56.] Nakamura, K. Classification of two-dimensional split trianguline representations of p-adic fields, Compos. Math., Volume 145 (2009), pp. 865-914 | MR | Zbl | DOI

[57.] Nakamura, K. Deformations of trianguline B-pairs and Zariski density of two dimensional crystalline representations, J. Math. Sci. Univ. Tokyo, Volume 20 (2013), pp. 461-568 | MR | Zbl

[58.] Orlik, S.; Strauch, M. On Jordan-Hölder series of some locally analytic representations, J. Am. Math. Soc., Volume 28 (2015), pp. 99-157 | Zbl | MR | DOI

[59.] Schlessinger, M. Functors of Artin rings, Trans. Am. Math. Soc., Volume 130 (1968), pp. 208-222 | MR | Zbl | DOI

[60.] Schmidt, T.; Strauch, M. Dimensions of some locally analytic representations, Represent. Theory, Volume 20 (2016), pp. 14-38 | MR | Zbl | DOI

[61.] Slodowy, P. Simple Singularities and Simple Algebraic Groups, 815, 1980 | Zbl | MR | DOI

[62.] Steinberg, R. On the desingularization of the unipotent variety, Invent. Math., Volume 36 (1976), pp. 209-224 | MR | Zbl | DOI

[63.] Tanisaki, T. Characteristic varieties of highest weight modules and primitive quotients, Adv. Stud. Pure Math., Volume 14 (1988), pp. 1-30 | MR | Zbl

[64.] Tate, J. p-divisible Groups, Proceedings of a Conference on Local Fields, 1966, pp. 158-183 | MR | Zbl

[65.] Thorne, J. On the automorphy of -adic Galois representations with small residual image, J. Inst. Math. Jussieu, Volume 11 (2012), pp. 855-906 | MR | Zbl | DOI

[66.] Thorne, J. A 2 -adic automorphy lifting theorem for unitary groups over C M fields, Math. Z., Volume 285 (2017), pp. 1-38 | MR | Zbl | DOI

Cité par Sources :