Corner, A. L. S.; Göbel, Rüdiger
Small almost free modules with prescribed topological endomorphism rings
Rendiconti del Seminario Matematico della Università di Padova, Tome 109 (2003) , p. 217-234
Zbl 1148.20308 | MR 1997988
URL stable : http://www.numdam.org/item?id=RSMUP_2003__109__217_0

Bibliographie

[1] R. Baer, Abelian groups without elements of finite order, Duke Math. J., 3 (1937), pp. 68-122. JFM 63.0074.02 | MR 1545974

[2] A. Birtz, Sur des décompositions directes paradoxales de groupes abéliens sans torsion, Abelian Group Theory, Proceedings, Honolulu 1982/83, Lecture Notes in Mathematics 1006 (Springer, Berlin, 1983), pp. 358-361. MR 722630 | Zbl 0517.20029

[3] A. L. S. Corner, Every countable reduced torsion-free ring is an endomorphisms ring, Proc. London Math. Soc., 13 (1963), pp. 687-710. MR 153743 | Zbl 0116.02403

[4] A. L. S. Corner, Endomorphisms rings of torsion-free abelian groups, Proceedings of the International Conference on the Theory of Groups, Canberra 1965 (Gordon and Breach, New York, 1967), pp. 59-69. Zbl 0178.02303

[5] A. L. S. Corner, Additive categories and a theorem of W. G. Leavitt, Bull. Amer. Math. Soc., 75 (1969), pp. 78-82. MR 238903 | Zbl 0188.08502

[6] A. L. S. Corner, On the existence of very decomposable abelian groups, Abelian Group Theory, Proceedings, Honolulu 1982/83, Lecture Notes in Mathematics 1006 (Springer, Berlin, 1983), pp. 354-357. MR 722629

[7] A. L. S. Corner - R. Göbel, Prescribing endomorphism algebras, a unified treatment, Proc. London Math. Soc., 50 (1985), pp. 447-479. MR 779399 | Zbl 0562.20030

[8] M. Dugas - R. Göbel, Every cotorsion-free ring is an endomorphism ring, Proc. London Math. Soc. (3), 45 (1982), pp. 319-336. MR 670040 | Zbl 0506.16022

[9] M. Dugas - R. Göbel, Every cotorsion-free algebra is an endomorphism algebra, Math. Zeitschr., 181 (1982), pp. 451-470. MR 682667 | Zbl 0501.16031

[10] P. C. Eklof, Set theoretic methods in homological algebra and abelian groups, Les Presses de l'Université de Montréal, Montreal 1980. MR 565449 | Zbl 0488.03029

[11] K. Eda, Cardinal restrictions for preradicals, Abelian Group Theory, Contemporary Math. 87, Providence, 1989, pp. 277-283. MR 995283 | Zbl 0687.20049

[12] P. Eklof - A. Mekler, Almost Free Modules, Set-theoretic Methods, NorthHolland, 1990. MR 1055083 | Zbl 0718.20027

[13] L. Fuchs, Abelian Groups, Vol. I and II, Academic Press, 1970 and 1973.

[14] R. Göbel, Some combinatorial principles for solving algebraic problems, Infinite length modules, Trends in Mathematics, Birkhäuser Verlag, Basel, 2000, pp. 107-127. MR 1789212 | Zbl 0985.20047

[15] R. Göbel - S. Shelah, Indecomposable almost free modules-the local case, Canadian J. Math., 50 (4) (1998), pp. 719-738. MR 1638607 | Zbl 0959.20049

[16] R. Göbel - S. Shelah, Endomorphism rings of modules whose cardinality is cofinal to v, Abelian groups, module theory, and topology, Marcel Dekker, New York, 1998, pp. 235-248. MR 1651170 | Zbl 0940.16016

[17] P GRIFFITH, ]n-free abelian groups, Quart. J. Math. (2), 23 (72), pp. 417-425. MR 325804 | Zbl 0274.20068

[18] T. Jech, Set theory, Academic Press, New York, 1978. MR 506523 | Zbl 0419.03028

[19] S. Shelah, On uncountable abelian groups, Israel J. Math., 32 (1979), pp. 311-330. MR 571086 | Zbl 0412.20047

[20] S. Shelah, On endo-rigid strongly ]1-free abelian groups in ]1 , Israel J. Math., 40 (1981), pp. 291-295. MR 654584 | Zbl 0501.03015

[21] S. Shelah, A combinatorial theorem and endomorphism rings of abelian groups II, Abelian Groups and Modules (R. Göbel, C. Metelli, A. Orsatti and L. Salce, eds.), CISM Courses and Lectures 287, Springer-Verlag, 1984, pp. 37-86. MR 789808 | Zbl 0581.20052