Adolphson, Alan; Sperber, Steven
Differential modules defined by systems of equations
Rendiconti del Seminario Matematico della Università di Padova, Tome 95 (1996) , p. 37-57
Zbl 0944.12003 | MR 1405354
URL stable : http://www.numdam.org/item?id=RSMUP_1996__95__37_0

Bibliographie

[1] A. Adolphson, Hypergeometric functions and rings generated by monomials, Duke Math. J., 73 (1994), pp. 269-290. MR 1262208 | Zbl 0804.33013

[2] A. Adolphson - S. Sperber, Exponential sums and Newton polyhedra: Cohomology and estimates, Ann. Math., 130 (1989), 367-406. MR 1014928 | Zbl 0723.14017

[3] D.N. Bernstein, The number of roots of a system of equations, Func. Anal. Appl., 9 (1975), pp. 183-185 (English translation). MR 435072 | Zbl 0328.32001

[4] B. Dwork - F. LOESER, Hypergeometric series, Japan. J. Math., 19 (1993), pp. 81-129. MR 1231511 | Zbl 0796.12005

[5] N. Katz, Thesis, Princeton University (1966).

[6] N. Katz, On the differential equations satisfied by period matrices, Publ. Math. I.H.E.S., 35 (1968), pp. 223-258. Numdam | MR 242841 | Zbl 0159.22502

[7] A.G. Khovanskii, Newton polyhedra and toroidal varieties, Func. Anal. Appl., 11 (1977), pp. 289-296 (English translation). MR 476733 | Zbl 0445.14019

[8] A.G. Khovanskii, Newton polyhedra and the genus of complete intersections, Func. Anal. Appl., 12 (1978), pp. 38-46 (English translation). MR 487230 | Zbl 0406.14035

[9] A.G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math., 32 (1976), pp. 1-31. MR 419433 | Zbl 0328.32007

[10] H. Matsumura, Commutative Ring Theory, Cambridge University Press, Cambridge (1986). MR 879273 | Zbl 0603.13001

[11] E. Spanier, Algebraic Topology, McGraw-Hill, New York (1966). MR 210112 | Zbl 0145.43303