Boldrini, José Luiz
Stationary spatially periodic compressible flows at high mach number
Rendiconti del Seminario Matematico della Università di Padova, Tome 84 (1990) , p. 201-215
Zbl 0739.76059 | MR 1101293
URL stable : http://www.numdam.org/item?id=RSMUP_1990__84__201_0

Bibliographie

[1] H. Beirão Da Veiga, On a stationary transport equation, Ann. Univ. Ferrara, 32 (1986), pp. 79-91. MR 901589 | Zbl 0641.35006

[2] H. Beirão Da Veiga, Stationary motion and incompressible limit for compressible viscous fluids, Houston J. Math., 13, 4 (1987), pp. 527-544. MR 929289 | Zbl 0663.76066

[3] H. Beirão Da Veiga, Existence results in Sobolev spaces for a stationary transport equation, Ricerche di Matematica (Napoli), (Volume in honor of Prof. C. Miranda), Suppl. 36 (1987), pp. 173-184. MR 956025 | Zbl 0691.35087

[4] M. Padula, Existence and uniqueness for viscous steady compressible motions, Arch. Rational Mech. Anal., 97 (1987), pp. 89-102. MR 860302 | Zbl 0644.76086

[5] J. Serrin, Mathematical principles of classical fluid mechanics, in Handbuch der Physik, Bd. VIII/1, Springer-Verlag, Berlin, Gottingen, Heidelberg, 1959. MR 108116

[6] R. Temam, Navier-Stokes equations and nonlinear functional analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, 1983. MR 764933 | Zbl 0833.35110

[7] A. Valli, On the existence of stationary solutions to compressible Navier-Stokes equations, Ann. Inst. Henry Poincaré (Analyse non linéaire), 4, 1 (1987), pp. 99-113. Numdam | MR 877992 | Zbl 0627.76080