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Stationary Spatially Periodic Compressible Flows
at High Mach Number.

JOSÉ LUIZ BOLDRINI (*)

ABSTRACT - We prove the existence of stationary spatially periodic solutions
to the Navier-Stokes equations for compressible flows even for the case
of high Mach number, under the assumption that the external force field
is small in a suitable sense. The proof of this result is based on a existence
result for a convenient linearized problem, followed by a fixed point
argument.

1. Introduction.

A computational technique frequently used to obtain stationary
flow is based on perturbation schemes; that is, we consider the flow
to be computed as a perturbations of a known « mean flow», and,
then, we use a successive approximation method to compute it. The

theoretical counterpart of this technique is to use a fixed point argu-
ment for a suitable operator obtained by rewriting the equations for
the flow in a convenient way. The task, therefore, is to obtain certain
a priori estimates that are used to guarantee that the associated
operator has the required properties for a fixed point theorem be
applied.

Usually, the difficulties that appear during the process of the

derivations of the a priori estimates are such that the hypothesis of
the smallness of the speed of the mean flow is required, ruling out

(*) Indirizzo dell’A.: Departamento de Matematica Aplicada, Universi-
dade Estadual de Campinas (IMECC), 13081 Campinas, SP, Brazil and Dipar-
timento di Matematica, Università degli Studi di Trento, 38050 Povo (Tiento),
Italy.
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in this way the possibility of studying of solutions corresponding to
high Mach numbers.

The aim of this work is to show the existence of stationary flows
in the whole space of a viscous compressible fluid in the case of spa-
tially periodic perturbations of a constant mean flow (see (1.2)), even
in the case of high Mach numbers.

We recall that the equations for the motion in = 2 or 3,
of a viscous compressible barotropic fluid in the stationary case can
be written as:

The first equation corresponds to the conservation of momentum,
the second to the conservation of mass. In these equations v and o
are the velocity and the density of the fluid, respectively; p is the
pressure, y which is assumed to be a known increasing function 
f is the assigned external force field; the constants 0 C ~C and 0 ~ ~
are the viscosity coefficients (see Serrin [5] for details); V, 4, div are,
respectively, y the gradient, Laplacian and divergence operators. In

this paper the external force field is assumed to be periodic in space
and small in a norm to be defined later on.

We look for a spatially periodic solution of (1.1) by using a variant
of the method introduced by Valli in the paper [7], for the case of
bounded domain and small Mach number. We prove first a exist-

ence theorem for a suitable linearization of (1.1) around the given
mean flow, followed by a fixed point argument using Schauder fixed
point theorem. In order to cope with the high speed of the mean flow,
we have to retain in the linearized operator certain terms that did
not show up in Valli’s work. We observe that the linearized problem
is solved via the continuation method and that we need a priori
estimates in Sobolev spaces of suffieiently high order to be able to
handle the nonlinear terms.

Let us now describe the main result. We will be working in the
important case of perturbation of a uniform stream; that is, we will
be searching for a nontrivial solution in the neighborhood of:

positive constant ;

where c~ is a positive constant ,
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which is a solution of (1.1) when f = 0. We observe that since we
do not impose restrictions on the magnitudes of ~Oo and cv, this mean
flow can have high Mach number. The case of other mean flows is
still under investigation.

Now we introduce the variables:

and the equations of motion become:

Denoting the Sobolev space, with norm the

Q-periodic functions with mean value zero (see the section (2.1) for
the precise definitions), we can state the following theorem:

THEOREM 1.1. Consider eo and vo as in (1.3), and suppose that
~(’ ) is a C2-function such that &#x3E; 0, and f E (H;,o(Q))n with 
sufficiently small. Then there exists a solution (w, q) 
x H2,0(Q) to (1.4) such that [[ r~ [[ 2 ~ C [[ t [[ 1, where C is indepen-
dent of f .

Finally, we should mention that the method of the proof of the
theorem sugests that, for purposes of numerical computation using
perturbation schemes of flows at high Mach numbers, it is impor-
tant to keep certain terms in the linearized equations to be used.
Some of these terms come from the equation of conservation of mass;
they are the term div (actually (v - V) 27) to ensure that there is
no loss of regularity at each iteration of the schem, and the term

to guarantee high Mach numbers.

2. The linearized problem.

2.1. The functional setting of the equations.

We consider the same functional setting as Temam does in [6];
briefly, given a positive constant L, we take the n-cube Q = [0, L]n
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and denote by H,-(Q), the space of functions which are in

(i.e., the Lebesgue measurable functions defined in .Rn such
that their restrictions to any bounded open set D in .Rn belong to
the usual Sobolev space and which are periodic with period Q,
that is, functions ~c( ~ ) such that + Lei) = u(x) for 
i = 1, ..., n, where (ein, ... , is the canonical basis of .Rn.

For an arbitrary H~ (Q ) is a Hilbert space for the scalar

product:

The functions in .g9 (Q) are caracterized by their Fourier series
expansions:

where I - I denotes the euclidean norm in R^. The Dorm 11 u ll,,, induced
by the scalar product is equivalent to the norm given by

We remark that to easy the notation we will denote by II 11m also
the norm in the space (cartesian product of n copies of

~?(9))’ We also set:

~3~ ~~(Q) = such that in its Fourier expansion co = o) ,

that is, we are considering functions with mean value zero.
Now, given G vo as before, p1 &#x3E; 0 and

v E such that is sufficiently small (this will be precised
later on), we want to find a solution to

the system:

Concerning this problem, we have the following result:
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THEOREM 2.1. If v E (lqp’°(Q))n is such that is sufficiently
small (see (2.7)) then there is a unique solution (w, q) E (H;,o(Q))nx

to the system (2.1). Moreover, this solution satisfies the

estimate

where C does not depend on .F, G.

REMARK 2.1. Suppose for a moment that the above line theorem
is true. Let us take = in (2.1,) and, for given (v, or) E

the solution of (2.1) which corresponds to .F’ and G given by

These functions have mean value zero if the mean value of f is

zero, and FE (gp’°(Q),n, G E H;,O(Q) because of the usual Sobolev

imbeddings theorems (it is to handle terms like J(w.V)v that we
require Sobolev spaces of relative high order).

Then, a fixed point of the map

is a solution of the problem (1.4) (it is used the fact that vo) is

a solution to (1.1) with f = 0).
In what follows we will prove that (2.1) has a solution satisfying

(2.2) by a continuation argument, y and secondly that 0 has a fixed
point via the Schauder fixed point theorem (we need (2.2) to con-
trol the nonlinear terms in the above F).

2.2. d priori estimates f or the linearized problem.

The necessary a priori estimates will be obtained in the sequence
of lemmas that follow. We begin by observing that the following
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periodic Stokes Problem can be treated exactly as in Temam [6],
and as we did in Section 2.2, by using Fourier series. We conclude
that the unique solution (u, q) E (g~ +2,o(Q)~ n to

satisfies the estimate

for any with C independent of h2.
Using this and the form of the equations in (2.1), one quickly

obtains the

LEMMA 2.1. A solution (w, n) E X H2,0p(Q) of (2.1) sat-

isfies

Thus, from (2.3) (ii) it is enough to estimate 11 div w 11, to prove
(2.2). For this, we enunciate

LEMMA 2.2. For any 0  E1, there is a positive constant C, inde-
pendent of 81’ such that any solution of (w, q) E 
of (2.1) satisfies:

PROOF. We multiply (2.1) (i) scalarly by w, (2.1) (ii) by 
integrate in Q, and add the two resulting equations. After some
integrations by parts, using of the periodic boundary conditions, the
fact that Zv has mean value zero and also
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one is left with:

But, we have

and since and q have mean value zero, the stated
result follows.

To obtain higher order estimates, we apply the operator Di (which
denotes i = 1, ..., n, to (2.1); then we multiply the first of

the resulting equations by the seconj by and in-

tegrate on Q. Proceeding exactly as before, we obtain that there is

a positive constant C such that for any 0  ê2

By using (2.4), we obtain

LEMMA 2.3. Any solution (w, r~) E xH:,O(Q) satisfies

for any positive 8,, E2, where C is independent of 81, E2.
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Analogously, applying D¡D¡, i, j = 1, ..., n, to (2.1), and pro-
ceeding as before, one obtains that for any 0  E3 it holds

with 0 independent of ~3. By using (2.5), one obtains

LEMMA 2.4. Any solution (w, q) E to (2.1) sat-
isfies

for any positive £1’ 8. and E3 , with 0 independent of £1’ E2 , ea.

By taking E3 = 8, £2 = E2, 81 = £4, 8 E (0, 1], in (2.6), and using
the result in (2.3) (ii), one obtains (where we can assume C&#x3E; §)

By taking s = 1 /(2 C) in this last inequality, y it results

Finally, by taking

we obtain the estimate (2.2).
If we had taken E2 = E, 81 = E2, s E (0, 1], in (2.5), proceeding as

before under a condition like (2.7), and finally using (2.3) (i), we could
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obtain

This last estimate will be explicitly used later on. From now on,
we assume that condition (2.7) is such that both estimates (2.2) and
(2.8) are valid.

2.3. Existence o f solutions to the linear problem.

We follow Padula [4] and Valli [7], and introduce the « modified
pressure »

System (2.1) is the transformed into

Obviously, y for a given FE (.H9~°(Q))n, G E H2,,O(Q), to each solu-
tions (w, r¡, n) E (H3,0(Q)) n X H2,0(Q) X H,2,0(Q) to (2.9) corresponds to a
solution (w,77) to (2.1).

To solve (2.9), we first make the following observations:

(i) The first two equations in (2.9) are related to the modified
periodic Stokes problem

For (H3,,O(Q))n, h2 E H,2,0(Q), by the use of Fourier series exactly
as in Temam [6], it is easyly shown that the coefficients

of the Fourier expansions of  and n, respectively, satisfy

where ~hi , ~0~~ , ~h2 , {O}} are the Fourier coefficients
of hi and h2, respectively.
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Thus, we conclude that (2.10) has a unique solution satisfying
the estimate

(ii) The third equation in (2.9) is related to the stationary
transport equation

For 0 C ~,, V E (H9~°(Q))n, it can be shown that, under
the condition

the (2.12) has a unique solution satisfying the estimate

In fact, these results can be proved exactly as was done in the
paper of Beirao da Veiga [1], [2], [3]. There, these results were proved
for a bounded domain with a certain boundary condition by the use
of elliptic regularization; that is, one approaches the solution of (2.12)
by the solutions of the equation

as 0 C E approaches zero. In our case, exactly the same procedure
applies: we just coppy his estimates by taking in consideration that
our problem is actually simpler since all boundary terms in the deri-
vation of the estimates automatically desappear due to the periodicity
condition.

With these observations, the existence of solutions to (2.9) is

proved by arguments similar to the ones of Valli [7]. As a first step
one considers (2.9) in a special case of p = ¡.to, , = (o to be described
below. In this case a solution of (2.9) will be solved by a fixed point
argument as follows: given J’tl) E we solve the

periodic Stokes problem (2.10) with and h2 = + 
In this way we obtain a solution (w, J’t2). Then, we

solve (2.12) with
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and we obtain a solution ~2 (the condition (2.15) below will be used
here to guarantee the solvability of (2.12)).

This defines a map

given by -P(?7,,, _ (~2 , ~2 ) . Obviously, a fixed point of the map
together with the corresponding w that comes from solving the periodic
Stokes problem, constitutes a solution to (2.9). Now, we consider the
compact convex set of H;,O(Q) X H;,O(Q):

Here, 0  1~1 will be chosen suitably. It is shown easyly that 1~
is continuous in the topology of by using estimate (2.11), the
above described Stokes problem furnishes

If we take v such that

then we have

and we can apply estimate (2.14) to the above transport equation,
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Now, if we take ~o large enough such that

and take

then we obtain and 111]211;R1. Thus, T’(.g), and we
can apply Schauder Fixed Point Theorem to conclude that h has a
fixed point. Hence, (2.9) has a unique solution due to estimate (2.2).

The proof of existence of solutions to (2.1) for other 03BC and C is
done by a continuation argument. For this, we take fixed po and ’0
satisfying (2.16); assume v satisfying (2.15), and introduce the param-
etrization

as well as the corresponding unbounded operators

defined by

It is enough to prove that 1 belongs to the set

there is a unique solution

Actually, we prove that l1. _ [0, 1] by showing that A is open,
closed and non void. By the previous argument, 0 E ll ; now, con-
sider there exists From its derivation, it is seen that
estimate (2.2) can be taken with the constant C independent of

and we conclude that II is bounded independent of
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Moreover, the equation T (t) (w, q) = (F, G) can be rewritten as

Now, observing that although T(t) is not bounded because of the
term v - Vq in div (nv) 7 the difference T (o ) - T (1 ) is a bounded oper-

ator ; therefore, the last equation has a unique solution if )t - rl is

sufficiently small, and A is open. The proof that ll is closed is easyly
done if one observes that, from its derivation, estimate (2.8) holds
independent of ~e[0,l]; thus, 7 11 T(t)-l II c C, with C independent of

Therefore, if tn - t, and = (F, G), we con-
clude that the sequence ~(wn, r~n)~ is bounded in (.Hp’°(Q))n 
and, consequently, convergent in to (w, ~). Now,
it is easy to show that T (t) (w, ~ ) _ (.F’, G) ; hence, and we

conclude that l1. is closed.

Thus, (2.1) has a unique solution satisfying (2.2).

3. The non linear problem.

Now, we can proof Theorem 1.1. We use again Schauder fixed
point theorem for the map 0 defined in the Remark 2.1 just after
the statement of the Theorem 2.1. By this last theorem, the map 0
is well defined in the set

if 0  .R2 C min ~D, 11, where D is the constant that appears in (2.15).
Also, for (v, 6) E If if we call (w, ~) = 0(v, a), by using (2.2) we have

where C12 and 013 indicate constants depending on the constants ap-
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pearing in the Sobolev imbeddings of H;,O(Q) and in 

n = 2 or 3.

Thus, if we take R2 = min {D, (2C13)w, 11 and f E (H’,O(Q))n such
that we obtain ~~ ~ ~~ 2 c I~2 , and therefore 

Moreover, M is a convex compact set of W = 
and 0: W - W is continuous in the topology of W. In fact, let

7 an)f be a sequence in .l~ convergent to (v, a) in the topology
of W. By the definition of M, we can extract a subsequence that
converges weakly in to (v, a), and since M its

closed and convex in this space, we conclude that (v, a) E M. Now,
let (wn, = O(V,, and (w, q) = 0(v, 6) that also belong to M.
Now, the difference (w, n) - (wn, is a solution of the linear sys-
stem (2.1) for right-hand sides T’n = .F’(v, a) - .F’(vn, an), Gn = 0 (the
expression for F(v, a) is given in Remark 2.1). Using the fact that

9 an) I (wn, 9 27n) 7 (v, a), (w, ~) all belong to M, we obtain that .F~.
converges to zero in ~2(Q). Since by (2.8) Jlw - -E- 

we obtain that (wn, nn) converges to (w, q) in W. Thus,
we can use Schauder fixed point theorem, and Theorem 1.1 is proved.
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