@article{RSMUP_1977__58__241_0,
author = {Srivastava, H. M.},
title = {A watsonian theorem for multiple series},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {241--245},
year = {1977},
publisher = {Seminario Matematico of the University of Padua},
volume = {58},
mrnumber = {543144},
zbl = {0386.33002},
language = {en},
url = {https://www.numdam.org/item/RSMUP_1977__58__241_0/}
}
TY - JOUR AU - Srivastava, H. M. TI - A watsonian theorem for multiple series JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1977 SP - 241 EP - 245 VL - 58 PB - Seminario Matematico of the University of Padua UR - https://www.numdam.org/item/RSMUP_1977__58__241_0/ LA - en ID - RSMUP_1977__58__241_0 ER -
%0 Journal Article %A Srivastava, H. M. %T A watsonian theorem for multiple series %J Rendiconti del Seminario Matematico della Università di Padova %D 1977 %P 241-245 %V 58 %I Seminario Matematico of the University of Padua %U https://www.numdam.org/item/RSMUP_1977__58__241_0/ %G en %F RSMUP_1977__58__241_0
Srivastava, H. M. A watsonian theorem for multiple series. Rendiconti del Seminario Matematico della Università di Padova, Tome 58 (1977), pp. 241-245. https://www.numdam.org/item/RSMUP_1977__58__241_0/
[1] et , Fonctions hypergéometriques et hypersphériques : Polynômes d'Hermite (Gauthier-Villars, Paris, 1926). | JFM
[2] and , Expansions of Appell's double hypergeometric functions (II), Quart. J. Math. Oxford Ser., 12 (1941), 112-128. | MR | JFM
[3] , Some multiple series transformations, Jñanabha Sect. A, 4 (1974), 165-168. | Zbl | MR
[4] , A Watson's theorem for double series, J. London Math. Soc. (2), 13 (1976), 95-96. | Zbl | MR
[5] , Some relations between hypergeometric series, Simon Stevin, 50 (1976), 103-110. | Zbl | MR
[6] , Generalized hypergeometric functions (Cambridge Univ. Press, Cambridge, 1966). | Zbl | MR
[7] , On the reducibility of Appell's function F 4, Canad. Math. Bull., 16 (1973), 295-298. | Zbl | MR
[8] , A note on generalized hypergeometric series, Proc. London Math. Soc. (2), 23 (1925), xiii-xv. | JFM





