@article{RSMUP_1974__51__167_0,
author = {Pasini, Antonio},
title = {Some fixed point theorems of the mappings of partially ordered sets},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {167--177},
year = {1974},
publisher = {Seminario Matematico of the University of Padua},
volume = {51},
mrnumber = {382084},
zbl = {0339.54039},
language = {en},
url = {https://www.numdam.org/item/RSMUP_1974__51__167_0/}
}
TY - JOUR AU - Pasini, Antonio TI - Some fixed point theorems of the mappings of partially ordered sets JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1974 SP - 167 EP - 177 VL - 51 PB - Seminario Matematico of the University of Padua UR - https://www.numdam.org/item/RSMUP_1974__51__167_0/ LA - en ID - RSMUP_1974__51__167_0 ER -
%0 Journal Article %A Pasini, Antonio %T Some fixed point theorems of the mappings of partially ordered sets %J Rendiconti del Seminario Matematico della Università di Padova %D 1974 %P 167-177 %V 51 %I Seminario Matematico of the University of Padua %U https://www.numdam.org/item/RSMUP_1974__51__167_0/ %G en %F RSMUP_1974__51__167_0
Pasini, Antonio. Some fixed point theorems of the mappings of partially ordered sets. Rendiconti del Seminario Matematico della Università di Padova, Tome 51 (1974), pp. 167-177. https://www.numdam.org/item/RSMUP_1974__51__167_0/
[1] - , A theorem on partially ordered sets, with application to fixed point theorems, Can. J. Math., 13, no I (1961). | Zbl | MR
[2] ( = ), Fixed point theorems on the mappings of partially ordered sets, Rendiconti del Circolo Matematico di Palermo, Serie II, Tomo XX (1971), pp. 139-142. | Zbl | MR
[3] , Fixed points in ordered sets, In Honor of Prof. Dr. Iniguez y Almech on the Occasion of his Seventieth Birthday and Academic Retirement, pp. 163-172, Consejo Sup. Investigacion Ci. Fac. C. Zaragoza, 1969 (see Mathematical Reviews, 1970, rep. n. 4171). | MR
[4] , On the invariant points of a transformation, Ann. Pol. Math., 11 (1961), pp. 199-202. | Zbl | MR
[5] , Sulla sottoalgebra di Frattini (it has to appear on « Le Matematiche »).





